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ABSTRACT

Computational models can define the functional dynamics of com-

plex systems in exceptional detail. However, manymodeling studies

face seemingly incommensurate requirements: to gain meaningful

insights into some phenomena requires models with high resolu-

tion (microscopic) detail that must nevertheless evolve over large

(macroscopic) length- and time-scales. Multiscale modeling has

become increasingly important to bridge this gap. Executing com-

plex multiscale models on current petascale computers with high

levels of parallelism and heterogeneous architectures is challeng-

ing. Many distinct types of resources need to be simultaneously

managed, such as GPUs and CPUs, memory size and latencies,

communication bottlenecks, and filesystem bandwidth. In addition,

robustness to failure of compute nodes, network, and filesystems is

critical.

We introduce a first-of-its-kind, massively parallel Multiscale

Machine-Learned Modeling Infrastructure (MuMMI), which cou-

ples a macro scale model spanning micrometer length- and millisec-

ond time-scales with a micro scale model employing high-fidelity

molecular dynamics (MD) simulations. MuMMI is a cohesive and

transferable infrastructure designed for scalability and efficient
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Figure 1: Addressing many important biological questions requires large length- and time-scales, yet at the same time molec-

ular level details. Here we showcase theMultiscale Machine-Learned Modeling Infrastructure (MuMMI) by simulating protein-

lipid dynamics for a 1 µm x 1 µm membrane subsection at near-atomistic resolution.

execution on heterogeneous resources. A central workflow man-

ager simultaneously allocates GPUs and CPUs while robustly han-

dling failures in compute nodes, communication networks, and

filesystems. A hierarchical scheduler controls GPU-accelerated MD

simulations and in situ analysis.

We present the various MuMMI components, including the

macro model, GPU-accelerated MD, in situ analysis of MD data,

machine learning selection module, a highly scalable hierarchical

scheduler, and detail the central workflow manager that ties these

modules together. In addition, we present performance data from

our runs on Sierra, in which we validated MuMMI by investigating

an experimentally intractable biological system: the dynamic inter-

action between RAS proteins and a plasma membrane. We used up

to 4000 nodes of the Sierra supercomputer, concurrently utilizing

over 16,000 GPUs and 176,000 CPU cores, and running up to 36,000

different tasks. This multiscale simulation includes about 120,000

MD simulations aggregating over 200 milliseconds, which is orders

of magnitude greater than comparable studies.
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1 INTRODUCTION

While supercomputers continue to provide more raw compute

power, it is becoming increasingly difficult for applications to fully

exploit these resources. The challenge of building a multiscale mod-

eling capability utilizing modern supercomputing architecture —

heterogeneous computing elements, deep memory hierarchies, and

complex network interconnects — can be decomposed along two

thematic axes: (1) the algorithmic challenges in managing increas-

ing levels of parallelism within an application, and (2) the logistic

challenges of scheduling and coordinating the execution of multiple

applications across such diverse resources.

The prototypical approach to the first challenge are monolithic

parallel applications able to simulate problems of unprecedented

size and scale using full-system runs [30, 34, 67]. Conversely, the

workflow challenge is often approached through massively parallel

ensembles [56], which execute a large number of small- or medium-

scale instances simultaneously. Here, we describe the creation of

a novel simulation infrastructure that addresses both challenges

and enables, as an example, the execution of a massively parallel,

multiscale simulation steered by a machine learning (ML) approach,

and orchestrated through a sophisticated workflow governing thou-

sands of simultaneous tasks.

The scientific challenge to which we apply our novel infrastruc-

ture is an investigation of the interaction of RAS proteins with the

cell membrane. Mutations of RAS contribute to a wide range of

cancers as RAS modulates the signaling pathways that control cell

division and growth. RAS activates signaling only when bound to

lipid bilayers that form cellular membranes. This membrane asso-

ciation is an under-explored area of cancer biology that may be

relevant to therapeutic intervention against cancer. We use MuMMI

to facilitate the better understanding of the mechanism and dynam-

ics of interaction between RAS, lipids, and other signaling proteins,

which requires molecular-level detail and cannot be obtained exper-

imentally with current technologies. MD simulations can simulate

such interactions with the appropriate detail, but only for micro-

scopic length- and time-scales (even on the largest computers).

However, lipid concentration gradients and protein aggregation

evolve over length- and time-scales hard to access through high-

resolution MD.
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Our approach to address this challenge of scale is to create a

macro model for a cell membrane with RAS proteins and couple it

to a ML-driven ensemble of MD simulations (Figure 1). The macro

scale membrane model can reach experimentally observable time-

and length-scales (µm and ms) with only moderate computing re-

sources, but captures none of the molecular-level details of protein-

protein and protein-lipid interaction. To provide molecular details

of interest, we continuously monitor all RAS proteins and their

local environments in the macro simulation and compare against

configurations that have been previously seen, spawning MD sim-

ulations for configurations not previously sampled. The sampling

process that determines which simulations are created is driven by

a novel ML framework aimed at exploring the phase space of all

possible RAS-membrane configurations. Limited only by available

computing resources, this approach samples increasingly unusual

configurations, effectively providing molecular-level detail on a

macro scale. Automated feedback from MD simulations is used to

continuously improve the macro model.

To achieve this automated multiscale simulation that can ex-

plore both the micro and macro scale, a sophisticated workflow is

needed. MuMMI takes advantage of the heterogeneous compute

architectures, and coordinates and links existing tools in a variety

of programming languages. Our workflow is built upon the Mae-

stro Workflow Conductor [15, 22], which provides an interface for

scheduling the core simulations, as well as a number of supporting

tasks, such as simulation setup, in situ analysis, etc. Maestro along

with the Flux scheduler [3], provides a scalable scheduling solution.

OurMultiscaleMachine-LearnedModeling Infrastructure (MuMMI)

represents a new type of simulation framework that couples a

diverse set of components through ML into a massively parallel

application to address pressing scientific inquiries. Our key accom-

plishments are:

• A large-scale workflow manager that connects diverse software

components into a single coherent, massively parallel, multiscale

simulation;

• Innovations in scheduling and coordinating thousands of inter-

connected tasks and managing the resulting TBs of data;

• A demonstration on Sierra [45], the next-generation leadership

supercomputer at Lawrence LivermoreNational Laboratory (LLNL),

where we efficiently utilize the entire machine (176,000 CPUs

and 16,000 GPUs) for several days aggregating about 120,000 MD

simulations detailing a square µm membrane macro simulation

with 300 RAS molecules over 150 µs.

2 RELATEDWORK

As computational frameworks become more complex, scientific

workflows are moving away from monolithic simulation codes

and toward a complex web of interconnected tools, e.g., to pre- or

post-process data, to execute ensembles for parameter studies, or

to couple various different physics solvers. To manage such com-

plex applications, a variety of workflow tools have been proposed

to address different aspects of the overall challenge. One class of

workflow solutions, such as Pegasus [21], Fireworks [38], or Ke-

pler [5], grew out of the need to assemble complex post-processing

capabilities, e.g., for large-scale experiments like the Large Hadron

Collider. These workflows offer mature programming interfaces,

distributed workflows, and data management solutions. A simi-

lar class of systems, such as Merlin [56], the UQ Pipeline [19], or

SAW [27], focus on creating large ensembles, especially in the con-

text of uncertainty quantification. Furthermore, these tools often

contain various statistics and analysis capabilities or integrate pack-

ages, such as PSUADE [52] or Dakota [2], which provide their own

job management capabilities. Collectively, these tools are primarily

designed to operate in a batch-based, capacity-focused environ-

ment and do not provide the tight coupling needed for MuMMI.

For example, many tools provide computational steering to enable

adaptive sampling but enabling the tight feedback loop between

the macro and micro models as well as the inter-job task placement

and scheduling in these systems can be challenging.

Alternatively, there are frameworks designed to directly cou-

ple different physics solvers together as opposed to ochestrating

tasks at a higher level. Examples for these approaches are pre-

CICE [13], OpenPALM [24], or the OASIS coupler [18]. These ap-

proaches directly manage the exchange of information between

solvers, communicating entire grids and/or boundary conditions

in a massively parallel environment. However, they require access

and modifications to the source code of the corresponding libraries

and compatibility between the coupled software systems. In the

case of MuMMI, we are coupling completely distinct simulation

codes and infrastructure, many of which are written in different

programming languages. Furthermore, our workloads are highly

variable making the scheduling and job placement more complex

than required for traditional multi-physics applications.

In summary, we require the system-facing aspects of the work-

flow and ensemble management systems to handle job scheduling,

placement, and management, with a tighter coupling than exist-

ing solutions, and without the overhead of creating a joint multi-

physics executable. To this end, we have created a sophisticated

workflow to provide a highly integrated yet flexible solution that

combines aspects of ensemble workflows with the integration of a

joint multiscale application.

3 RAS-MEMBRANE DYNAMICS

Nearly a third of all cancers are driven by constitutively active

(oncogenic) mutations in RAS proteins accounting for a high per-

centage of pancreatic (�95%), colorectal (�45%), and lung (�35%)
cancers [62]. KRAS is the most frequently mutated RAS isoform

[78], and normally controls signaling through the MAP kinase path-

way, a critical regulator of cellular growth, migration, and survival.

Despite tremendous progress in RAS biology over the last three

decades, no therapies are currently available. RAS proteins localize

to the plasma membrane (PM) where they function as molecu-

lar switches by cycling between active (GTP-bound) and inactive

(GDP-bound) states. Only active RAS binds and activates proximal

effector proteins (i.e., RAF kinase) at the PM to propagate growth

signaling. Specific localization of RAS to different regions of the

PM may be important for the activation of signaling. However, it

remains unknown how membrane composition (e.g., charged vs.

neutral lipids), membrane dynamics (e.g., undulations and domain

formation), and other physicochemical membrane properties affect

the activity of RAS either directly or by regulating RAS orientation,

localization, or clustering.
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RAS-membrane dynamics and RAS-RAS interaction at the mem-

brane are inherently a multiscale process because the protein-lipid

and protein-protein interfaces are uniquely molecular, yet the long

waiting times for association, which are largely dependent on dif-

fusion, are inefficient to model in particle-based approaches. There-

fore, MuMMI is an ideal platform for characterizing RAS-membrane

dynamics. Here, we apply our multiscale approach to characterize

the key events that trigger oncogenic signaling.

Many groundbreaking MD simulation studies have probed the

relationship between structure, dynamics, and function in biologi-

cal macromolecules. These studies include both all-atom (AA) and

coarse-grained (CG) simulations containing millions to hundreds of

millions of atoms/particles. Modeled systems include: the ribosome

[79], viral capsids [32, 55, 57], the MexAB-OprM Efflux Pump [46],

cytoplasm [80], hydrodynamic effects on lipid diffusion [74], pro-

tein crowding [25] and protein clustering [16]. Other studies in-

clude long continuous simulations extending into the high µs to ms

range detailing: protein folding [61], RAS/RAF complexation [72],

and plasma membrane organization [37]. In a different approach,

ensembles of hundreds to thousands of shorter simulations have

been combined to accumulate multiple ms of total sampling: for

a membrane-embedded protein [42], to study protein folding and

unfolding using an implicit solvent model [73], MscL gating [50],

helix-helix interactions [6], and protein dimer and trimer assem-

blies [77]. However, simulations that represent the state-of-the-art

in either size or duration are typically deficient in the other compo-

nent (i.e., large but short or long but small). To reach larger systems

over longer time-scales, additional coarse-graining can be done,

combining whole molecule and/or proteins into single or a few

interaction sites [75]. A number of ultra-CG models have been

used to simulate systems of large length- and time-scales; such as

viral particles budding [54], or protein-induced membrane vesic-

ulation [58]. Ultra-CG models, however, are lacking in molecular

level details and are not suited for all types of problems.

Although there have been many simulations of impressive dura-

tion and/or size, the real value of a simulation is more accurately

quantified by the proportion of relevant phase space that has been

sampled at sufficient resolution. Multiscale simulations have often

been used to access large length- and time-scales at a coarser reso-

lution and provide needed accuracy for select cases of interest. Mul-

tiscale approaches have been developed to couple different resolu-

tions including quantum mechanics/molecular mechanics, AA/CG,

AA/ultra-CG, and micro/macro [8, 9, 12, 14, 26, 36, 41, 60, 63, 65, 72]

including recent work using bothmacro andmicro scale simulations

to model PM protein clustering [16].

4 MUMMI: AN OVERVIEW

MuMMI enables a new genre of multiscale simulation by coupling

macro and micro scales using ML. Figure 2 illustrates how MuMMI

integrates diverse software components that seamlessly work to-

gether, coordinated by a sophisticated workflow. Our framework

drives a large-scale parallel simulation of the macro model, which

is based upon dynamic density functional theory (DDFT) alongside

a particle-based MD model. The macro model spans biologically-

relevant length- and time-scales (µm and ms) that are intractable

Figure 2: MuMMI couples the macro scale (DDFT and MD

models) with the micro scale (CG model) using a ML-based

sampling framework. Data resulting from the macro scale

simulation is analyzed by ML, and interesting subregions

are simulated at the micro scale. CG simulations are ana-

lyzed in situ and used to improve the macro model via on-

the-fly feedback. The central workflow uses Flux as the re-

source manager, as abstracted using Maestro, and coordi-

nates each of the software components using in-memory

and on-disk communication. Modules in orange are the

core, specially-developed components of our framework,

and other colors represent external software that are ex-

tended for MuMMI.

for any single MD simulation; but, the macro model can not re-

solve fine spatial and temporal scales that are needed to under-

stand protein-membrane and protein-protein interactions. A new

ML-driven importance-sampling framework bridges the resolution

gap by analyzing the resulting macro scale data and selecting the

subregions of scientific importance. These selected macro scale

“patches” are candidates for the higher-fidelity micro scale simula-

tions. MuMMI launches micro scale CG simulations corresponding

to the selected patches based on the availability of computational re-

sources. A CG simulation consists of three phases: setup, simulation,

and in situ analysis. The setup phase maps a patch to a molecular

configuration that is then evolved, using MD simulations (ddcMD),

to study the dynamics of the system. Since MuMMI is designed to

support many thousands of CG simulations concurrently, storing

the resulting data at the desired frequency is not feasible. Instead,

the MD data is analyzed in situ, and the resulting analysis is saved

with full-system coordinate data to disk infrequently. Finally, a key

enabling technology in MuMMI is a self-healing feedback loop, in

which the results of the more-accurate CG simulations are used to

improve the parameters of the macro model.

5 WORKFLOWMANAGEMENT IN MUMMI

The workflow management in MuMMI has several roles while

conducting thousands of concurrent simulations and enabling on-

the-fly feedback (Section 5.1). New functionality was developed

within Flux to support MuMMI job scheduling requirements (Sec-

tion 5.2) and new strategies employed to manage the several PB of

raw data resulting from our simulation campaign (Section 5.3).

Installation and deployment. With many diverse components,

one of the first challenges in the development of MuMMI was a

streamlined process of installation and deployment. To this end,
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we use Spack [29] to install the entire infrastructure as a single

package, accounting for differences in platforms, compilers, etc. We

have developed MuMMI with portability in mind and deployed on

three HPC clusters at LLNL with varying architectures. This paper

discusses the deployment and testing on Sierra.

Initialization. MuMMI is initialized by requesting a full-size job

allocation on the target machine. (e.g., 4000 computational nodes

on Sierra). One node is assigned as the Flux master for job schedul-

ing and resource management activities. A portion (24 CPU cores)

of a second node is dedicated to our workflow to perform higher-

level tasks, e.g., such as deciding which simulations to run. All

remaining resources are used for performing simulations. In order

to leverage the heterogenous architecture of the target machine,

MuMMI distinguishes between different tasks based on their re-

source requirements and uses appropriate job placement strategies

to schedule jobs according to the resources needed. In our current

application, the CG simulations (using ddcMD) require GPU ac-

cess, whereas all other components (CG setup, CG analysis, and

the macro simulation) work entirely on CPU cores.

5.1 The Central Workflow Manager

The workflow manager (WM) is responsible for steering the frame-

work toward the target multiscale simulation based on scientific

interest. The WM is designed to be highly configurable and per-

forms several key tasks, e.g., continuously polling the macro model

for new patches, scheduling new CG simulations, and performing

periodic feedback. Almost all details of these tasks, e.g., the configu-

ration of the underlyingmachine and the frequency of a certain task,

are controlled via configuration files. The WM is written in Python

and uses Maestro [22] — an open-source workflow conductor with

a simple API — to abstract the interface with the underlying job

scheduler, resulting in a portable WM. Upon initialization, the WM

loads a pre-trained ML model that guides the selection of patches

for CG simulation.

Generation of patches from the macro model. As the macro model

simulation executes, snapshots of the resulting data are saved to

an instance of the IBM® Spectrum ScaleTM (GPFS). The WM con-

tinuously polls for new snapshots, and generates several patches

(spatial regions of scientific interest) per snapshot. At full scale, the

macro simulation delivers new snapshots with 300 patches every

150 seconds as binary data files, and the WM processes them imme-

diately. Patches are stored as serialized Python (pickle) objects in a

tar archive file (described in Section 5.3) and indexed by identifiers

for rapid access.

Ranking and selection of patches using ML. As new patches are

generated, they are analyzed for their “importance” in real-time.

This importance metric is used to create an in-memory priority

queue of all patches seen thus far. However, the importance metric

of patches is dynamic and changes frequently. Therefore, maintain-

ing and re-evaluating an ever-growing list of patches is computa-

tionally prohibitive. By design, the importance of a given patch

cannot increase over time. Therefore, we truncate the queue to a

computationally-feasible and scientifically-relevant length because

the discarded patches are deemed too uninteresting.

Tracking system-wide computational resources. A key responsi-

bility of the WM is to track the available computational resources,

which is done indirectly by tracking the tasks currently running

and their known allocation size. TheWM uses Maestro to query the

status of running jobs (previously started by the WM) from which

the available resources (with and without GPU) are calculated.

Scheduling of CG simulations. When new resources are available

(during the loading phase of the workflow or when a previously-

running job concludes), the WM launches new jobs with matching

resource requirements. Patches are selected from the priority queue

to start new CG setup jobs based on need and to match available re-

sources. Completed CG setup systems are selected to run as new CG

simulations, minimizing the wait time between running modules.

The WM allows staggering scheduling of new jobs to reduce the

load on the underlying scheduler, which is useful when executing

large simulations on several thousands of nodes.

Managing the feedback from micro to macro model. Periodically,

theWM triggers the feedbackmechanism, which aggregates proper-

ties of interest captured from theMD simulations via in situ analysis

and uses them to update the parameters of the macro model. The

current design of our feedback mechanism uses the filesystem.With

120,000 CG simulations, the scan of latest data from running and

completed simulations can take over 30 minutes. As a result, for

the application at hand, MuMMI’s feedback frequency is set to 2

hours. The limitations of the filesystem poses scalability challenges.

We plan to mitigate this limitation by bypassing I/O operations

and using faster communication between CG analyses and the WM

(discussed in Section 5.3).

Checkpointing and restarting. To account for systems errors due

to node failures, file corruption, GPFS failures, etc. that invariably

occur, the WM monitors all running jobs. Failed jobs are automati-

cally restarted at the last available checkpoint. For redundancy and

protection against control data being corrupted, all status files are

duplicated. As a result, MuMMI is capable of running simulations

for hundreds of hours of wall time at full scale. More specifically,

the WM uses several checkpoint files to save the current state of the

simulation in a coordinated manner, which can be used to restore

the simulation, potentially with different configurations or even on

a different machine.

5.2 Job Scheduling

MuMMI distinguishes jobs based on their resource requirements. In

particular, the CG simulations are the only component of MuMMI

making direct use of GPUs, while using relatively little CPU re-

sources, even accounting for its attendant in situ analysis job. There-

fore, given that each node on Sierra consists of four GPUs and 44

CPU cores, four CG simulations (one per GPU) on each node is

executed. Each CG simulation is bound to two CPU cores that share

cache, to maximize the cache available to ddcMD. The correspond-

ing analysis jobs occupy 3 cores for each CG simulation, totaling to

20 cores utilized by the CG simulations. In order to reduce latency

in communication with GPUs, this 20-core partition is bound ex-

clusively to the cores closest to the PCIe buses. The remaining 24

CPU cores per node are dedicated to CPU-only jobs and are either

the macro simulation, a CG setup job, or the workflow manager.
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Although this job arrangement works well for machine utiliza-

tion, a number of scheduling challenges arise. In particular, even

scheduling the CG simulation jobs in groups of four, several thou-

sand jobs still run concurrently. Avoiding oversubscription, or plac-

ing too many jobs on the same node, requires the ability to co-

schedule multiple jobs on the same node based on heterogeneous

resource requirements and is an uncommon practice in HPC. Most

importantly, jobs have to be dynamically scheduled so that jobs

that finish early are backfilled and efficiently utilize the available

resources.

Our initial attempts aimed at using LSF® [64] and jsrun [33] job

schedulers available natively on Sierra. However, considering the

requirements of the workflow, these options proved insufficient.

The large number of jobs required relatively high throughput to

quickly reach the steady state of machine utilization. Although js-

run could deliver the required speed, it lacked dynamic scheduling

at the time. LSF, on the other hand, provides dynamic scheduling

and scheduling by heterogeneous resources but is configured (on

Sierra) to not allow multiple jobs to be scheduled onto a single

node. Given these limitations, we use Flux [3], a resource manager

in active development at LLNL. Flux demonstrates the features

required to support our scheduling requirements. Since Flux is de-

signed to be configured and run directly by the user inside of jobs,

we configured it for co-scheduling and heterogeneous resource

scheduling. More specifically, in order for MuMMI to start up to

36,000 concurrent tasks, we exploit Flux’s ability to hierarchically

schedule sub-instances and to specify explicit bindings of resources.

In this case, we first schedule jobs to nodes and enforce the optimal

placement of jobs on each node as discussed above. Flux can be

launched within the framework of Slurm [39] and LSF, which lends

portability to our framework across different platforms. To ensure

an additional separation of concerns MuMMI uses a Maestro plugin

for Flux, allowing the WM’s interface to remain virtually indepen-

dent to the ongoing development within Flux and the option to

switch schedulers in the future.

5.3 Data Management

MuMMI is designed to run on supercomputers and address applica-

tions on an enormous scale. But, these applications pose significant

data management challenges. For example, our simulation of RAS

on the PM produced over 200 ms of CG trajectory data. Recording

snapshots at 0.5 ns intervals would generate over 400 million files

for snapshots alone, occupying over a PB of disk space. Including

files for stored analysis, logs, restart, macro model, and ML would

increase the number of files by a factor of 10. Managing and uti-

lizing the data at this scale would require a sustained filesystem

throughput on the order of 10,000 I/O operations per second for the

entire duration of the simulation. During our campaign on Sierra,

GPFS was considerably upgraded and ended up consisting of 154

PB of usable storage with 1.5 TB/s peak bandwidth.

In order to reduce the demand on the filesystem, we used a

combination of local in situ analysis and data aggregation strategies

to minimize bandwidth and I/O operations, especially expensive

metadata operations related to creation and deletion of files. In

particular, each CG simulation saves snapshots every 0.5 ns to a

local on-node filesystem (RAM disk). All the snapshots are analyzed

using a corresponding in situ module that extracts information of

interest, prunes snapshots to every 2 ns, and periodically (every

20 ns) saves local data to parallel (global) filesystem, appending

the snapshots and analysis to archive files. Together, these choices

reduce the number of files by 3 orders of magnitude, and the total

amount of data by a factor of 4.

For data aggregation, we chose the tar file format [35], aug-

mented with an index file (stored separately) to allow quick retrieval

of archive member files. Other more-advanced file formats, e.g.,

HDF5 [69], were considered, but not chosen because they modify

file headers on every update, which could lead to data corruption in

cases of untimely termination, e.g., due to node failure or time out.

Instead, the tar format allowed us to use the files in append-only

mode, so that previously stored data would never be overwritten

or corrupted, even due to bugs in the code. Additionally, the tar

format is portable, and the corresponding archives can be inspected

and unpacked using standard tools. This aggregation approach pro-

vided robustness against node failure, filesystem time outs, and

unexpected job terminations.

To further improve our data management strategy, we have

explored the incorporation of the IBM®Data Broker (DBR) [59]

into MuMMI. The DBR implements an in-memory key-value store

for fast data storage and retrieval with database level fault toler-

ance. Furthermore, the corresponding backend RedisTM [43] server,

configured as a cluster, can be tuned for the specific machine and

allocation size. Initial experiments suggest that using 10–100 nodes

on Sierra, CPU only and sharedwith running CG simulations, would

be sufficient to hold all necessary feedback and control data. For 50

Byte key and 257 KB value pairs, we observe average latencies of

0.4 and 0.5 ms per read and write operations respectively. Unfor-

tunately, at the time of our simulation on Sierra, the network and

filesystem as well as the DBR were not fully mature, and the com-

bination proved unstable. However, going forward, the expected

performance of the DBR could replace many of the frequent I/O

operations in MuMMI and significantly improve the overall perfor-

mance of the workflow especially the on-the-fly feedback.

6 MULTISCALE SIMULATION USING MUMMI

Having presented the central WM in MuMMI, we next discuss the

innovations in the simulation of the macro and the micro models

needed to enable our multiscale framework. We also discuss the

ML-based sampling and the on-the-fly feedback modules that were

developed to couple the two scales together. We note that all ranges

presented throughout this paper are formatted as a mean± standard

deviation, unless otherwise stated.

6.1 The Macro Model

In order to rapidly explore long time- and length-scale behavior

of RAS protein membrane dynamics, we developed a macro model

based on the classical approximation theory for liquids. Specifically,

our model uses DDFT to describe the lipid-lipid behavior [47]. In

this model, the lipid bilayer is represented as a two-dimensional

surface. Each protein and its conformational state on the bilayer

is represented by a single particle, which interacts with the lipids

through a potential of mean force (PMF). The proteins are modeled
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using Langevin equations [44] and interact with each other through

a radially symmetric pair potential.

The input parameters to the macro model are lipid-lipid direct

correlation functions and self-diffusion constants, RAS-lipid and

RAS-RAS potentials, and RAS diffusion constants. These param-

eters were derived from several hundred CG PM and RAS PM

simulations. The direct correlation functions were calculated using

lipid-lipid radial distribution functions (RDFs) in conjunction with

the Ornstein-Zernike equations [53]. The RAS-lipid PMFs were

derived from RAS-lipid RDFs using the Hypernetted-chain closure

relation [49]. The RAS-RAS potential was estimated from RAS-RAS

PMF simulations and expected association strength.

Within the framework of DDFT, the governing equations are

dictated by an appropriate free-energy functional, which yields a

chemical potential for the ith species, μi , by taking the variational

derivative of the free energy with respect to the lipid density of

that species. In the macro model, we can decompose each chemical

potential as μi = μLLi +μ
LP
i , where the lipid-lipid chemical potential

μLLi and the lipid-protein chemical potential μLPi are taken as:

μLLi = kBT
���ln(ni ) −

N∑
j=1

nj ∗ ci j
��� , μLPi (r) =

P∑
k=1

ui (|r − rk |) .

Here, ni = ni (r, t) is the local density for lipid i at time t in position

r, and ui = ui (r ) is the circularly symmetric protein-lipid PMF as

a function of distance r , for each of the ith lipid type. The direct

correlation function between lipid types i and j is given by ci j =
ci j (r ) for the distance r , and rk is the position of protein particle k
on the membrane. Finally, kB is the Boltzmann constant, T is the

absolute temperature, and the operation (∗) denotes a convolution:

(n ∗ c)(r) =
∫
n(r′)c(|r − r

′|)dr′. The evolution equations of DDFT

are given as

∂ni
∂t
=

Di

kBT
∇ · ni∇

(
μLLi + μ

LP
i

)
+ ξi ,

where Di is the self-diffusion coefficient for lipid i and ξi = ξi (r, t)
is a conservative noise term that represents density fluctuations

due to hidden degrees of freedom.

We implemented our macro model into the MOOSE finite ele-

ment framework [70]. This implementation consisted of modules

to compute the nonlocal correlation function convolutions, evalu-

ate the lipid-lipid evolution equations, compute the protein-lipid

interactions, and export the current lipid distribution to the protein

particle integrator. For integrating the protein equations of motion,

we used ddcMD (see Section 6.4). In this campaign, we used the

macro model to simulate a 1 µm × 1 µm bilayer, at a resolution

of 1200 × 1200 cubic-order elements, with 300 RAS molecules. We

observed a rate of 6.3±0.12 and 12.0±0.25 µs per day for 900 and

2400 MPI tasks, respectively.

6.2 ML-based Importance Sampling

As the macro model is running, it explores the phase space of

local lipid fluctuations. In this work, we are interested in the lipid

configurations underneath RAS to understand how RAS affects lipid

behavior and vice versa. Simulating all possible local neighborhoods

of RAS (“patches” ) would be computationally infeasible. Instead,

we sample the corresponding phase space of patches.

Because certain lipid configurations are much more common

than others, and simulating similar lipid configurations is wasteful

as they do not deviate far enough from previous simulations, ran-

dom selection of patches would be inefficient because selections

would mimic the distribution of the phase space, i.e., commonly-

occurring configurations will be selected often, whereas rare events

will likely be ignored. Instead, we use a deep neural network to

create a latent representation that captures the lipid configurations,

and use farthest-point sampling in the latent space to identify “im-

portant” (dissimilar to previously simulated) patches.

Specifically, for each timestep of the macro model, we extract a

30 nm × 30 nm patch underneath each RAS molecule. Each patch

consists of 14 lipid densities (8 lipid species in the inner leaflet

and 6 in the outer), and is represented as a 5 × 5 × 14 grid of lipid

concentrations, which can be used to initialize a corresponding

CG simulation. We use a deep neural network to construct a varia-

tional autoencoder (VAE) [23] that maps the 5 × 5 × 14 patch into

a 15-dimensional latent space, where each dimension represents

a complex, nonlinear degree of variation in the behavior of the

input data. We choose a VAE because it provides several favor-

able mathematical properties, such as a continuous distribution

in the latent space, which are important for statistical analysis on

the importance sampling. We developed several VAE models us-

ing Keras [17] and Theano [11] frameworks, varying the number,

widths, and types of layers in the VAE as well as different sizes

of the output latent space. Different latent spaces were evaluated

using reconstruction loss of the corresponding VAE; a detailed dis-

cussion on the evaluation of ML models is beyond the scope of

this paper. The final 15-dimensional latent space model was chosen

due to its superior balance between preserving the relationships

between lipid concentrations, and the computational advantages

of smaller dimensionality. The chosen VAE uses a combination of

fully-connected and convolutional layers, and makes use of batch

normalization as well as dropouts to minimize reconstruction error.

As macro model simulation creates new data, we add the new

patches into a priority queue, which is sorted based on the distance

(in latent space) from patches corresponding to the previously-

executed CG simulations. We use Faiss [40] to create an efficient

data structure that performs fast, approximate-nearest-neighbor

queries in the latent space, allowing for almost-real-time evalua-

tions of importance metrics. With availability of new computational

resources, the highest ranked patches are used to initiate CG simu-

lations. In this manner, we progressively sample the phase space of

all patches at a uniform and continually increasing density. Given

sufficient computational resources, MuMMI will ultimately cover

the phase space of all possible lipid configurations underneath RAS

molecules densely enough to perform an analysis of the entire

macro model at the scale of the CG model. In particular, for any

RAS molecule at any time step of the macro model we can find a

CG simulation that represents a lipid configuration close enough

to the patch in question to inform the given analysis query.

6.3 Setup of the CG Simulations

The CG MD simulation setup module (CG setup) transforms a con-

tinuummacro model representation into a particle-based micro rep-

resentation (see Figure 3). A selected 30 nm × 30 nm patch from the
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macro model is instantiated and equilibrated for a Martini [48] CG

simulation. Within the patch, the macro model dictates the number,

states, and locations of RAS proteins, as well as the concentration

and asymmetry of all membrane lipids, which are resolved down

to a 5 × 5 subgrid. The proteins, lipids, ions, and water molecules

are constructed using a modified version of the insane membrane

building tool [76]. The modified insane tool allows for specifying

lipid concentration with a subgrid resolution in each membrane

leaflet. The proteins’ initial conformations are sampled from pre-

constructed libraries based on their conformational state, randomly

rotated with respect to the membrane plane and packed at their

specified coordinates. The GROMACS MD package [1] (CPU-only

version) is used for energy minimization, equilibration, and to pull

the proteins to the bilayer. Using only the CPU cores allows the

workflow to set up new CG simulations without competing with

currently running CG simulations. All simulations were run using

the new-rf Martini parameter set [20], with a final time step of 20

fs, at 310 K and 1 bar semiisotropic pressure coupling. The setup

process includes particle creation, 1500 energy minimization steps,

and a total of 425,000 steps of equilibration for �140,000 particles.

6.4 GPU-accelerated CG Simulations

Once the particle systems are equilibrated they are queued for MD

simulations using ddcMD [66]. ddcMD is a highly scalable general-

purpose MD application with a flexible domain decomposition

capability. ddcMD has previously been used to study a variety of

problems in the areas of material science, fluid flows, and plasma

physics. Its performance has been acknowledged twice with Gordon

Bell Prize awarded to teams using ddcMD [30, 67]. In order to

support the multiscale simulations targeted in this paper, we made

significant extensions to ddcMD. In particular, newGPU capabilities

were added to accelerate the Martini CG force field.

Given that there already exist several GPU-enabled bio-MD

codes, our decision to extend ddcMD was motivated by the need

for not only a GPU-enabled high-throughput MD using the Martini

force field, but also one that minimizes CPU utilization. Minimizing

CPU usage is critical when working on architectures with low CPU

Figure 3: Particle-based micro simulations are created based

on input from the macro model. CG MD simulations are in-

stantiated based on protein location and state as well as sub-

grid lipid concentration specificity. Snapshots of a selected

patch (5 × 5) with one RASmolecule is shown after construc-

tion and after initial equilibration.

to GPU resources or when executing frameworks, like ours, with

high CPU demand from other tasks. As such, no existing MD code

in the computational biology community meets these constraints.

The GPU implementation in ddcMD to support biomolecular

simulations places the entire MD loop on the GPU. This includes

both bonded and nonbonded energy terms, neighbor table con-

struction, barostat (Berendsen) [10], thermostat (Langevin) [4], pair

constraints [7], and integrator (velocity Verlet) [68]. Therefore, com-

pared to other codes ddcMD only needs to copy particle state (posi-

tion, velocity, forces, box size, etc) from GPU to CPU infrequently;

only when output or analysis is needed. Only one CPU core is used

in ddcMD, primarily to handle the setup of the simulations and

output the data. After the simulation is initialized on the CPU, all

of the data is copied to the GPU memory, and all computations are

performed on the GPU. We applied several techniques to improve

the performance of GPU kernels:

• Improved thread scheduling in the nonbonded kernel by assign-

ing a single thread per particle. Processing a particle’s neighbor

list would result in enough threads to fill the GPU; however,

memory locality within a particle’s neighbor list is better than

the locality between two particles’ neighbor lists. We determined

that 8 threads per particle for the Martini force field yields the

best performance.

• Enforced coalesced memory accesses. Since each particle has

a set of 8 threads, ensuring these threads access contiguous

memory results in the better locality and fewer bank conflicts.

• Refactored data structures containing separate arrays of energies,

forces, and virials of each particle to be interleaved within a

single array. By interleaving the arrays, we optimize locality for

write access patterns.

• Use of shuffle-sync based reductions in lieu of shared memory

reductions. We found that the need for shared memory was elim-

inated by switching to warp-level shuffle intrinsic reductions.

This optimization is beneficial for large systems which may run

out of shared memory.

A series of different test cases have been performed on CPU (Intel®

Xeon® E5) and GPU (Nvidia® TeslaTM V100). The speedup of GPU

over CPU is �300 fold.
The community standard MD simulations with the Martini force

field is GROMACS [1]. GROMACS is designed to distribute the

calculations between CPU and GPU with an automated CPU-GPU

load balance scheme. To compare the performance of ddcMD and

GROMACS, we chose a typical MD simulation used in our frame-

work: a 135,973-bead Martini simulation of a single KRAS protein

on an asymmetric 8-component, 3077 lipid bilayer. Figure 4 sum-

marizes our comparison. We note that although GROMACS has a

better single-simulation per node performance than ddcMD when

the usage of the CPU cores is increased, ddcMD outperforms GRO-

MACS on the more relevant benchmark of four-simulations per

node and single-core per simulation by a factor of about 2.3. One

of the biggest bottlenecks for GPU acceleration is the bandwidth

between CPU and GPU, and frequent movement of data back and

forth between CPU and GPU is inefficient. The design of GROMACS

requires copying and synchronizing the data between the CPU and

GPU at every time step, which leads to performance degradation
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when the node is more completely occupied, even by separate sim-

ulations.

Additionally, ddcMD’s implementation of the MD loop on GPU

uses double-precision arithmetic, as compared to the single-precision

calculations done by GROMACS. We are currently evaluating op-

timization associated with the reduced precision, and expect to

find further performance improvement. Overall, for a typical MD

simulation for our system, we observe an idealized performance of

1.08±0.01 µs per day when executing ddcMD on a single core and

GPU.

6.5 In situ Analysis of CG Simulations

An integral part of MuMMI is the ability to carry out in situ analysis

of MD simulations. This feature is essential for dealing with such

vast numbers of CG simulations, in particular, to limit storage and

I/O requirements, as well as to provide on-the-fly feedback. On each

node, custom Python analysis modules are run on the CPUs. For

each simulation, newly generated snapshots are saved locally using

a fast RAM disk and consumed locally by running analysis modules.

The molecular structure is read using an extended version of the

MDAnalysis package [31] [51], that can parse the native ddcMD

binary and ASCII data formats. The online analyses to be performed

are designed and chosen based on parameters of interest from

preliminary simulations and those needed for re-optimization of the

macromodel. Examples of features of interest are RAS-RAS contacts,

RAS-lipid contacts, RAS orientation, and lipid distributions. The

result of these analyses are gathered locally and intermittently

written to GPFS. All analysis routines are optimized to be completed

within the time frequency of new frames being written. Having

this analysis instantly available during the simulation allows for

efficient exploration of the data while the simulation is running as

well as constant improvements of the fidelity of the macro model

through online feedback.

Figure 4: Comparison of job performance using GROMACS

and ddCMD for one to four simulations running on a single

node of Sierra using typical MD simulation from the work-

flow as the benchmark. All simulations use a single GPU per

simulation and are averaged over 10 runs (with standard de-

viations shown as error bars). All ddcMD simulations use a

single CPU core, whereas GROMACS simulations are multi-

core with one to eight cores per simulation (shown in differ-

ent shades of green).

Figure 5: MuMMI enabled a scientific campaign at an un-

precedented scale, generating about 120,000 (119,686) CG

simulations. These simulations ran from 1 to 4 µs, aggre-

gating over 200 ms of MD trajectories, and were distributed

with respect to RAS counts according to the required scien-

tific criteria.

6.6 On-the-Fly Feedback

The final and one of the most critical components of our frame-

work is an on-the-fly feedback mechanism from micro to macro

scale. The (initial) macro model used in the framework was param-

eterized using previously executed CG simulations. However, this

preliminary data was rapidly dwarfed by the output of the current

campaign, both in the number of CG simulations and the variations

in sampled local environments. Therefore, the fidelity of the macro

model, which depends on parameters derived from initial training

data, is limited. Instead, MuMMI provides a unique opportunity to

continuously improve model parameters.

We use an on-the-fly feedback loop, where the in situ analysis

of CG data is used to update the macro model parameters. In par-

ticular, we compute the protein-lipid parameters, RDFs, between

the proteins in their different states and all the lipids. These RDFs

are captured by the WM periodically, weighted based on the preva-

lence of each simulation (as dictated by the ML framework), and the

updated RDFs are used to construct new free-energy functionals

to use in the macro model. The result of this on-the-fly feedback is

the progressive improvement in the accuracy of the macro model,

as the parameters will now be based on ms of cumulative particle

simulation data. More importantly, the CG simulations explore lipid

compositions that are accessible via concentration fluctuations and

can be properly reweighted, something that was not possible in the

preliminary simulations used to construct the initial macro model.

7 RESULTS

MuMMI enabled us to study RAS protein dynamics on a PM by

running a multiscale campaign on Sierra over several days. This

multiscale simulation aggregated over 200 ms of MD trajectories

and analyzed more than 300,000,000 frames as part of �120,000 MD

simulations (Figure 5), with the final dataset consuming over 320

TB of disk space. Our campaign surpasses similar existing large-

scale MD simulation efforts by orders of magnitude, representing

a wealth of new information, potentially leading to new insights
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(a) Typical resource allocation used by MuMMI (b) Resource utilization during the initial run (c) Resource utilization during a typical restart run

Figure 6: MuMMI leverages heterogenous architectures by allocating resources as needed by different tasks. (a) shows the

allocation of 2040 nodes on Sierra for a typical run of our scientific campaign. A single node each is needed for the job scheduler

(yellow) and the workflow manager (brown), with all remaining resources employed for simulations. (b) and (c) show the

machine utilization for an initial run and a typical restart. Demonstrating that MuMMI is capable of achieving 100% resource

utilization in less than one hour.

in understanding the role of RAS in cancer initiation. Successfully

completing such a campaign at an unprecedented scale required

making effective use of the available computational resources.

Each computational node of Sierra, currently ranked 2nd on

the TOP500 supercomputing ranking [71], contains 44 3.45 GHz

POWER9® processors and four NVIDIA® TeslaTM V100 GPUs. Dur-

ing the course of this campaign, we were granted dedicated access

to 2040 nodes of Sierra for several continuous periods of 24 hours.

Other configurations were explored ranging down to 15 nodes

(without a running macro model) and up to 4000 nodes (utilizing

the full machine). All results discussed in this section represent a

typical 2040-node run; similar trends were observed when scaling

to the full machine.

7.1 Resource Utilization

As described in Section 5.2, we used Flux to allocate portions of a

node to each different type of task. Per our design, we dedicated all

available GPU resources to the compute-intensive CG simulations

and enforced the 20/24 split of CPU cores. Illustrated in Figure 6a,

the 20-core partition was dedicated to the CG simulations and anal-

ysis, reserving the remaining cores for the macro model simulation,

CG setup processes, and the WM. In a typical n = 2040 node setup,

one nodewas dedicated to Flux and one 24-core partition to theWM.

The single macro model simulation occupied the 24-core partition

of up to 500 nodes (d = 500). CG simulation bundles successfully

utilized both the 20-core partition and GPUs on the remaining n− 1

nodes. We note that each pair of CPUs on a Sierra node share an L2

cache. In order to maximize the L2 cache available to ddcMD, each

CG simulation was allocated two adjacent CPU cores, although

ddcMD only used a single core. We were also asked to leave at least

two cores free by the administrators for ongoing system processes,

which we counted within the four extra ddcMD cores. Finally, the

24-core partitions of the n−d−2 remaining nodes were reserved for

short-lived CG setup processes that are started only as the supply

of setup CG systems starts to be depleted. We note that in order

to prevent over-saturation of the system with similar patches, the

ML algorithms slowed selection to prevent a stale buffer of selected

patches so that newly identified patches can be considered for setup.

Figure 6 illustrates the machine utilization for two characteristic

runs. For simplicity, these figures show only then−d−2 nodeswhere

the macro model was not running. Figure 6b shows the initial run

where the multiscale simulation was being started. In the beginning,

the workflowmanager has not seen any patches and therefore takes

�8 hours to fully load the GPUs of all 2040 nodes. We observed that

setup of the first batch of patch selections finished in the expected

90 minute time frame with the corresponding ddcMD jobs starting

immediately thereafter. A typical run can support a total of 8160 CG

simulations but can only setup 1538 CG systems at a time. Therefore,

we observed “step-like” patterns in the GPU utilization curves about

every 90 minutes as batches of CG system setup completed and

filled the next portion of available GPUs. Overall, our framework

took just over 7.5 hours to achieve full utilization of all available

GPUs when starting from scratch. Each CG (ddcMD) simulation

was configured to simulate over 1 µs of MD, running a minimum

of 24 hours, causing the framework to significantly slow down the

selection of new patches. In particular, in the two hours following

the saturation of all GPUs, the framework created the buffer of CG

setups described above. The rest of the runmakes steady use of 100%

GPUs and about 45% CPU cores (20 out of 44 cores). Figure 6b is

cropped at 16 hours, after which we observed steady-state behavior.

The restart capabilities in MuMMI make it straightforward to

continue the simulation from the previous states. Figure 6c high-

lights the typical utilization pattern during a restart. Since restart

runs already have CG simulations that were either previously run-

ning or were already set up, the delay until full utilization is reduced

significantly. In particular, MuMMI takes only about an hour to

reach 100% GPU (and about 45% CPU cores) utilization. This par-

ticular run also shows that when ddcMD jobs conclude (small dips

in the GPU curve), the corresponding GPUs are immediately re-

assigned; on two instances, when enough new ddcMD jobs have

been started, CG setup runs spike to refill the CG setup buffer.

We remind the reader that these results highlight the utilization

of the nodes where the macro model simulation was excluded,

and the macro model makes stable use of 100% CPU cores in their

24-core partition, running on 50 to 500 nodes. Furthermore, we

emphasize that the variability in resource utilization as illustrated

in the results is due to scientific requirements of our RAS campaign.

Indeed, MuMMI is fully capable of achieving 100% utilization when

required, and provides explicit control to the application for limiting

the resources as needed.
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7.2 Running at Scale on Sierra

We have successfully scaled MuMMI onto 4000 nodes of Sierra

maintaining the resource utilization described above: 100% GPU

utilization and about 45% to 100% CPU utilization based on the state

of the simulation. Irrespective of the number of available nodes, our

framework creates an ensemble of MD simulations using a single,

scalable macro model simulation. Here, we focus on the scaling

of the workflow with respect to the size of the simulation, rather

than the scaling of the individual components. In particular, we

highlight the load sustained by the workflow in terms of the size

and temporal sampling of the data.

Macro model. The typical set up of dedicating 24-core partition

of 100 nodes to the macro model results in a simulation of 12.0±0.25

µs per day for a 1 µm × 1 µm membrane simulation with 300 RAS

molecules. Lipid concentrations are updated every 20 ns, and the

RAS particles are integrated with a 25 ps time step. At steady state,

the macro model outputs one snapshot every 150 seconds (wall

time) with binary and ASCII files totaling 105 MB.

ML selection. The encoding of new patches using ML is done

in real-time, and the cost of maintaining the in-memory priority

queue as well as approximate-nearest-neighbor queries is negligible.

It takes 14±2 seconds (with occasional instances taking up to 26

seconds) to re-evaluate the importance of about 50,000 candidate

patches. To maintain computational affordability, we truncate the

queue to a length of 50,000.

CG setup, simulation, and analysis. To instantiate a 30 nm × 30

nm patch from the macro model to a CG simulation, one bilayer

leaflet is fixed at 1600 lipids, and the complementary leaflet is cre-

ated to embody the necessary asymmetric bilayer, allowing for

some variation in the total number of lipids between patches. The

total lipid number in each simulation is 3070±82 and with protein(s),

water, and ions totaling �140,000 particles. Each CG setup takes

1.5±0.1 hour (using 24 CPU cores with 4 hardware threads each).

With a time step of 20 fs, ddcMD simulates 1.04 µs per day running

on 1 GPU and 1 CPU core on a fully loaded node. Saved binary

particle positions take �3.1 MB per snapshot and are generated

locally every 0.5 ns (�42 seconds wall time). For each simulation,

a corresponding in situ analysis module (using 3 CPU cores) pro-

cesses the data locally. Analyzed data, snapshots for offline analysis

(every 2 ns), restart checkpoints, and log files are moved to GPFS

every 20 ns (�30 minutes wall time).

Throughput Variability. The summarized statistics for MuMMI

are as follows:

• Macro model simulation: 12.0±0.25 µs per day using 2400

MPI tasks

• ML patch queue latency: 14±2 s per 50,000 queries

• CG setup: 1.5±0.1 hours per patch

• ddcMD performance: 1.04±0.01 µs per day

For the campaign mentioned in this paper, the goal is to run each

selected micro patch for at least 1 µs. The MuMMI workflow is

throughput-limited due to the length of time required to run the

micro simulations, with ddcMD requiring a full day to reach the

minimum run time. With forthcoming improvements in the speed

of ddcMD, we expect to see a corresponding increase in overall

throughput of MuMMI. During the 6 to 24 hour long runs per-

formed for this campaign, on average 81%–98% of available GPU

resources on Sierra were utilized. Periods of resource underuti-

lization are due to simulation loading at the beginning of runs,

initial buildup of setup patches (during an initial run), and >0.2% for

turnover when simulations are stopped and new ones started. With-

out any resource conflicts, ddcMD is capable of producing 1.08±0.01

µs per day. During our campaign, on a fully loaded machine, over

80% of the time simulation throughput was 1.04±0.01 µs per day

(5.6% less than the ideal). Of the remaining time/simulations, �10%
experienced a slow down in output rate of about two fold and the

rest had a broader distribution of throughput times. It should be

noted that these runs took place while Sierra was in early testing

and hardening phase and a number of delays due to hardware and

software were observed.

7.3 RAS Campaign on Sierra

In this work, we have used MuMMI to carry out a multiscale simu-

lation of RAS proteins on a model cell membrane at unprecedented

spatial and temporal scales, enabling us to directly probe the bio-

logically relevant processes related to cancer initiation. MuMMI

efficiently utilized all of Sierra (176,000 CPUs and 16,000 GPUs)

as well as subsections of the machine. A total of 5.6M GPU hours

were used for running �120,000 MD simulations. These simulations

aggregated over 200 ms of 30 nm × 30 nmMD trajectories represen-

tatively sampling a square µm membrane macro simulation with

300 RAS proteins over 150 µs. This volume of simulations and ag-

gregated simulation time represents orders of magnitude increase

over traditional simulation campaigns.

In total, the macro model generated �2M candidate patches. Of

the candidate patches, �120,000 were selected by the ML-based im-

portance sampler and simulated at the micro CG MD level. Each 30

nm × 30 nmmembrane patch contained one or more RASmolecules

and was simulated for a minimum of 1 µs averaging 1.7±0.8 µs (see

Figure 5). The integration timestep of the CG MD simulations was

20 fs, requiring over 1013 energy evaluations of the 140,000 particle

size simulations to reach the aggregated time of over 200 ms. Sim-

ulations were analyzed online every 0.5 ns and frames saved for

offline analysis very 2 ns, resulting in over 100M stored frames for

later analysis occupying 320 TB of disk space. Online analysis was

performed for most of the simulations and over 300M frames were

processed.

Detailed analysis of both the online-processed data and the saved

(complete) trajectories, as well as experimental verification of key

simulation are currently underway, and are beyond the scope of this

paper. In particular, the majority of standard simulation analysis

tools and approaches were not developed to work with such a

large quantity data and range of simulated conditions, requiring

improvements to existing tools. The results will be presented in

forthcoming publications, along with open access to the dataset.

Preliminary findings indicate RAS dynamics on the membrane are

lipid dependent, showing how both RAS conformational preference

and RAS-RAS aggregation is dependent on lipid composition.
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8 DISCUSSION AND CONCLUSION

The workflow infrastructure of MuMMI represents a new way

to effectively integrate HPC workload situated between the large,

embarrassingly-parallel ensembles and the more tightly coupled

multi-physics simulations. As demonstrated above, MuMMI can

fully and efficiently utilize one of the world’s largest supercom-

puters while running a complex interdependent workflow. Unlike

previous efforts, MuMMI employs advanced ML methods to couple

different scales to resolve scientific inquiries. This new framework

uses a sophisticated workflow to overcome the difficulty of linking

simulations at multiple scales using ML and creates a groundbreak-

ing platform producing a multiscale simulation that is orders of

magnitude larger than previously reported.

Running MuMMI on all of Sierra, especially as one of the earliest

applications, required addressing a number of challenges beyond

the technical contributions of this paper. To aid with reproducing

or extending our approach and to suggest potential areas of fu-

ture research and system development, we briefly discuss some of

these challenges. As mentioned in Section 5.3, managing the I/O

load, both in terms of data size as well as inode count, is crucial,

and strategies such as in situ analysis can help with mitigation.

Furthermore, we employed a careful job layout to allow maximal

use of local on-node RAM disk between related jobs to lighten the

load on the GPFS filesystem. In the future, we plan to move to a

database solution, such as the DBR. Another unexpected bottle-

neck was the loading of a large number of shared libraries, such as

Python modules. Treating all jobs as entirely independent implies

an individual start-up and tear-down phase which, especially on

a large parallel system, can incur significant overheads as shared

libraries are simultaneously loaded by thousands of tasks. Instead,

we plan to restructure the workflow to preload all necessary li-

braries at start-up and avoid repeated I/O by assigning new data to

their corresponding tasks without a tear-down and restart. We are

investigating using tools like Spindle [28] to avoid this complexity

and recover the independence between jobs. However, currently

Spindle is designed to load libraries within a single job and does

not directly support the large number of independent jobs used

by MuMMI. In general, MuMMI is under active development to

accelerate the macro model, support additional protein species, and

incorporate atomistic MD. Workflow-related extensions include

real-time feedback, improved resource allocation, and support for

different machine architectures.

The framework presented by MuMMI is generic and can be ex-

tended to other application areas such as chemistry, climate science,

and materials science, where a similar multiscale implementation

is beneficial. A number of other applications share the same charac-

teristics and could potentially benefit from the MuMMI workflow.

For example, one might investigate bond switches in atomistic MD

simulations by selectively executing quantum mechanics at energy

barriers or observe the evolution of hurricanes in a long-range cli-

matemodel by initiating higher resolutionweathermodels. MuMMI

represents a flexible framework not only to easily build such ap-

plications but to ensure their scalability on large, heterogeneous

HPC architectures of the future. Finally, the seamless integration of

diverse components facilitated byMuMMI is an important stepmov-

ing towards exascale, where the co-design of scalable frameworks

that focus on portability, data movement and layout, and perfor-

mance optimization are key to a sustainable hardware-software

ecosystem.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED

We tested molecular dynamics codes ddcMD (version 2019.1) and

GROMACS (version 2019.1) on LLNL’s Sierra supercomputer using

the IBM Spectrum MPI (rolling-release). The tests benchmarked

a CUDA-enabled ddcMD GROMACS using various numbers of

GPU and CPU core resources (as described in the paper). NVIDIA

CUDA library with version 9.2.88 were used. The performance of

each combination of GPU and CPU cores was averaged from 10

duplicated runs. For the main simulation campaign we successfully

tested MOOSE and ddcMD of the same source code on several other

Linux platforms: an x86 workstation, and 4 different clusters with

IBM POWER8 and POWER9 cores.

ARTIFACT AVAILABILITY

Software Artifact Availability: Some author-created software ar-

tifacts are NOT maintained in a public repository or are NOT avail-

able under an OSI-approved license.

Hardware Artifact Availability: There are no author-created hard-

ware artifacts.

Data Artifact Availability: Some author-created data artifacts

are NOT maintained in a public repository or are NOT available

under an OSI-approved license.

Proprietary Artifacts: There are associated proprietary artifacts

that are not created by the authors. Some author-created artifacts

are proprietary.

List of URLs and/or DOIs where artifacts are available:

https://github.com/LLNL/maestrowf
https://github.com/XiaohuaZhangLLNL/mdanalysis

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: Sierra, Nvidia Tesla v100, IBM

POWER9 CPUs, GPFS

Compilers and versions: Python v2.7.15, Theano v1.0.2, gcc v4.9.3

Applications and versions: GROMACS v5.1.4, Moose (com-

mit 072243866cc40abba97295729fc4ea838dda95dc ), Flux (commit

70bf1098579d585db1b36e02deb18f7abdb8949f), MDAnalysis v0.16.2,

ddcMD v2019.1, maestrowf v1.1.4dev1.1

Libraries and versions: IBM Spectrum MPI v10.2.0.11rtm2,

NVIDIA CUDA version 9.2.88, OpenMPI 2.0.0

Paper Modifications: We modified MDAnalysis to parse the dd-

cMD native binary and ASCII data format. A new format named

“DDCMD” is added to the trajectory reader of MDAnalysis. By do-

ing so, the ddcMD output data has been integrated seamlessly with

the MDAnalysis package.

For the Macro model simulation we used a modi-

fied version of the MOOSE finite element software. Our

modifications were incorporated into the git commit

072243866cc40abba97295729fc4ea838dda95dc (Dec 14 18:34:56

2016), cloned from https://github.com/idaholab/moose.git. Our

modifications consist of adding modules to the phase_field module:

1) a ’userobject’ (SolutionDump) that grabs the current solution and

exports it to a file for use by the particle integrator (ddcMD). This

object also reads particle positions from ddcMD. 2) a ’userobject’

(SolutionGrab) that implements the non-local lipid-lipid convolu-

tion functions. 3) a ’kernel’ ’LipidMembrane’ that implements the

lipid-lipid interactions (using data from SolutionGrab). 4) a ’kernel’

(HycopTermTable) that implements the lipid-particle interactions.

5) Modifications to the ConservativeNoise kernel to allow more

control from the input script and timestep scaling.

ARTIFACT EVALUATION

Verification and validation studies: We need to cover all of the

applications we tested. We need to describe the environment

GROMACS (version 2019.1): Ran performance studies on Sierra,

compiled with gcc v4.9.3, IBM Spectrum MPI v10.2.0.11rtm2, and

NVIDIA CUDA version 9.2.88. A 135,973-bead Martini simulation

of a single KRAS protein on an asymmetric 8-component, 3,077

lipid bilayer was used as the test case. The benchmark calculation

is carried out on a Sierra node using different combination of GPU

and CPU cores. There are four different categories of jobs in term of

number of GPUs: 1-GPU, 2-GPU, 3-GPU, and 4-GPU per node jobs.

Note that multiple GPUs are used separately for MD simulations. In

other word, each MD simulation use 1 GPU. Each category of jobs

ran with 1 to 8 CPU cores. Each combination of GPU and CPU cores

were run for 10 trials each. A total of 4*8*10 = 320 MD simulations

was performed on Sierra. The performance was calculated for each

combination by averaging the accumulated time (us/day) of the

MD trajectories from all 10 runs.

ddcMD (version 2019.1): Ran performance studies on Sierra, com-

piled with gcc v4.9.3, IBM SpectrumMPI rolling release version, and

NVIDIA CUDA version 9.2.88. The same test case as GROMACS

was used in the ddcMD benchmark calculation. Since ddcMD has

offloaded the entire MD loop to the GPU, only one CPU core is

needed for each GPU simulation. The benchmark calculation was

carried out on a Sierra node using 1 GPU and 1 CPU. Using the same

approach as GROMACS, we run four different categories of jobs

in terms of number of GPUs: 1-GPU, 2-GPU, 3-GPU, and 4-GPU

per node jobs. For 1-GPU job we run 1 MD simulation using 1 GPU

and 1 CPU. For 2-GPU job we run 2 MD simulations that each MD

simulation using 1 GPU and 1 CPU, and so on.

MOOSE: For the main simulation campaign MOOSE and ddcMD

were compiled with gcc 4.9.3 and using OpenMPI 2.0.0, and run on

Linux Intel x86 clusters (Surface and Quartz at LLNL). We have also

run successful tests of the same source code on several other Linux

platforms: an x86 workstation, and 4 different clusters with IBM

POWER8 and POWER9 cores. Tests also included checking subsets

of kernels against known solutions.
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Quantified the sensitivity of results to initial conditions and/or

parameters of the computational environment: Wemade use of Spack

to maintain a consistent environment that was loaded before testing

and execution.


