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Abstract—Extraction of multiscale features using scale-space is one of the fundamental approaches to analyze scalar fields. However,

similar techniques for vector fields are much less common, even though it is well known that, for example, turbulent flows contain

cascades of nested vortices at different scales. The challenge is that the ideas related to scale-space are based upon iteratively

smoothing the data to extract features at progressively larger scale, making it difficult to extract overlapping features. Instead, we

consider spatial regions of influence in vector fields as scale, and introduce a new approach for the multiscale analysis of vector fields.

Rather than smoothing the flow, we use the natural Helmholtz-Hodge decomposition to split it into small-scale and large-scale

components using progressively larger neighborhoods. Our approach creates a natural separation of features by extracting local flow

behavior, for example, a small vortex, from large-scale effects, for example, a background flow. We demonstrate our technique on

large-scale, turbulent flows, and show multiscale features that cannot be extracted using state-of-the-art techniques.

Index Terms—Helmholtz-Hodge decomposition, flow analysis, multiscale features

Ç

1 INTRODUCTION

MULTISCALE representations and the notion of scale-space
analysis have long been a crucial building block of data

analysis and signal processing. The fundamental idea is to
split a signal into its spectral components, i.e., low versus high
frequencies, in order to remove noise or analyze phenomena
at different spatial or temporal scales, e.g., daily versus
monthly versus seasonal temperature fluctuations. How-
ever, these techniques have been predominantly designed
for scalar-valued signals, and applying them to vector fields
is challenging. Turbulent flows, in particular, are known to
contain features on a wide (and continuous) spectrum of
scales [1]. Although scientists observe coherent structures at
various temporal and spatial scales in animations, defining
and extracting such features directly from a velocity field has
proven elusive. Often, smoothing is applied to individual
vector components or derived scalars, which can produce
significant artifacts (see, e.g., Figs. 4 and 5).

We contend thatmultiscale flow features require a concep-
tually different viewpoint compared to conventional scale-
space approaches, which consider a signal exclusively in
terms of its frequency content, and use “scale” only to define
the frequency range of the corresponding filter. In flowfields,
however, one is often interested in global effects, e.g., the
presence of a background flow or other large-scale motions,
compared to local ones, e.g., small-scale vortices. These

concepts are only loosely coupled to the frequency of the sig-
nal, but rather are more concretely defined in terms of spatial
scales, and echo a Lagrangian viewpoint that distinguishes a
local observermovingwith the flow from a global one.

To create “observers” at different scales, we propose to
extend Helmholtz’s perspective [2], [3], according to which
the flow at a given point is affected by the flow at every
other point in the domain. Through this perspective, we
propose to create different scales by explicitly restricting the
region of influence for every point. In particular, using the
natural Helmholtz-Hodge decomposition [4], [5], we split
the flow into small-scale effects, i.e., induced by the flow
within the region of influence, and large-scale effects, i.e.,
induced by flow structure further away. By continuously
adjusting the filter size, we can create a multiscale decompo-
sition based on splitting the observed effects, rather than
smoothing signals. More importantly, the resulting decom-
position has a physical interpretation: the large-scale flow
describes the overall motion at a given scale, whereas the
small-scale flow defines the relative motion as observed
when moving with the large-scale flow. In the limit of an
infinitesimal filter, the small-scale flow reverts to the tradi-
tional Lagrangian frame of reference, where the observer
moves along particles in the flow.

Multiscale techniques, in general, create an alternate func-
tion to represent behavior above or below a chosen scale.
Similarly, our approach creates alternate (small- and large-
scale) vector fields, which can be analyzed using any of the
existing vector field techniques. Our multiscale decomposi-
tion is not aimed at any specific type(s) of features. Rather,
feature extraction can be seen as operations defined on vector
fields, and our decomposition supports all known opera-
tions. This paper demonstrates computation of critical
points, streamlines, and pathlines as operations on the
derived field, which appear to identify interesting
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phenomena even though they are not directly connected to
their conceptual counterparts in the original flow.

Unlike existing approaches, the presented decomposition
does not define “scale” using spectral content, but as the
(spatial) region of influence. Here, we present a way to split
the features based on the size of their region of influence.
The splitting operation presented here depends entirely
upon the spatial derivatives of the flow in spatial neighbor-
hoods and, therefore, separates spatially multiscale features,
such as multiscale vortices. Given a temporally smooth
unsteady flow, the presented approach can be applied to
each time-step independently, producing a decomposition
that is multiscale in space and smooth in time. Particle paths
in turbulent unsteady flows are typically affected by behav-
ior at many scales, e.g., small vortical motion revolving in a
larger vortex. As mentioned above, the goal is not to extract
the particle paths of a given unsteady flow. Instead, our
approach decomposes the flow and can represent the parti-
cle paths in the absence of large- or small-scale behavior.
Considering that pathline computation, as an operation, is

not linear, the presented decomposition provides a new
way to separate the particle behavior with respect to flow at
different scales (see Fig. 1).

Contributions. We present a new multiscale decomposition
framework for vector fields. More specifically,

� We propose a new filter to solve the Poisson equation
directly at multiscale. The proposed filter, a modified
Green’s function, is based on the idea of “splitting”
local versus nonlocal effects, compared to the tradi-
tional “smoothing” filters.

� Using the modified Green’s function, we extract
multiscale features from vector fields. Our approach
generalizes a recent work [5], which compensates for
the global harmonic background flow, by allowing
compensation for for more general types of flows.

� We present a Fourier-based approach to compute the
multiscale decomposition, which has a simple imple-
mentation (about 120 lines of Python code), and is
several orders of magnitude faster than the

Fig. 1. Turbulent flows often exhibit complex phenomena at a wide range of spatial and temporal scales, and extracting multiscale features of interest
is challenging. Here, we present a new framework for multiscale decomposition of flow fields. Using a novel splitting kernel, we decompose a given
flow into a small-scale and a large-scale component (with respect to a chosen scale). The figure shows a synthetic flow (a), which comprises of a
steady flow with four centers of rotation superimposed with a time-varying rotational flow (see Section 4.3). As seen in the figure, the superposition
suppresses two of the centers and forces the other two inwards. Pathlines seeded near the expected vortices do not highlight swirling behavior. Our
approach allows separating the flow features at the two scales, such that the small-scale flow component (b) captures the expected, stationary cen-
ters of rotation, whereas the large-scale component (c) captures the larger, time-varying rotation. The top view (bottom row) of the three flows high-
lights the difference in the spatial scales of (b) and (c), which are superimposed in the original flow (a).
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previously presented technique [4] (about 87� for a
typical 2D case).

� We demonstrate our multiscale decomposition on
analytically designed as well as simulated turbulent
flows. We show that our approach enables extraction
of multiscale features, such as nested vortices. We
also show that the proposed technique produces fea-
tures that are stable in scale-space, and can be
applied to unsteady flows by decomposing flow at
each time-step independently.

2 RELATED WORK

Turbulent flows are known to contain features on a wide
(and continuous) spectrum of scales. Characterizing the
inherent multiscale features of turbulence has been a long-
standing problem in fluid dynamics [1], and scientists are
interested in characterizing whether or not there exist uni-
versal structures across scales. Several multiscale analysis
and representation approaches have been proposed; we
refer the reader to Mishra et al. [6], [7] for a discussion of
related techniques.

The intuition about multiscale features is most often for-
malized using signal processing techniques, where selected
filters (usually low-pass) are used to study the data at a con-
tinuous spectrum of scales, also called scale-space [8]. Isotro-
pic [9], [10] as well as nonisotropic [11], [12] filtering have
been used to construct the scale-space, and for smoothing
and denoising vector fields. Most existing techniques apply
the scale-space analysis independently to each velocity com-
ponent. However, linear smoothing often fails to preserve
sharp flow features (see Fig. 5 published by Tong et al. [13]).
Furthermore, the resulting flows, especially the remainder
(high-frequency) component can produce distortions that
seem to not correspond to any physical feature (see Fig. 5).
In general, when treating each velocity component indepen-
dently, it remains unclear how to physically interpret the
results, e.g., the chosen filter may not preserve conformal
finite-element spaces, HðdivÞ and/or HðcurlÞ. Building
upon smoothing techniques, Xia et al. [14] proposed vector-
valued wavelets, but they have primarily been used to
remove additive noise [15], [16], and they share some of the
limitations of smoothing.

Alternatively, Tong et al. [13] proposed to smooth
derived fields. In particular, they decompose a given flow
into a pair of potential fields, smooth these potentials, and
recombine the results to obtain a “simpler” flow. This
approach is based upon a fundamental result in flow analy-
sis, the Helmholtz-Hodge decomposition (HHD), and results in
the expected effects, i.e., enhancing or suppressing small-
scale structures. Nevertheless, since smoothing is still per-
formed using a low-pass filter, and more importantly, the
two fundamental constituent potentials are smoothed inde-
pendently, the physical relevance of the resulting flow
remains unclear (see Fig. 5). Tong et al.’s approach is closely
related to the decomposition presented in this paper, as we
also use a variant of the HHD to create a multiscale repre-
sentation. However, instead of “smoothing” the given flow,
our goal is to “split” the flow based on local versus non-
local effects. Sections 3 and 4 will provide mathematical
details and comparisons between the two approaches.

Another related approach is the proper orthogonal
decomposition (POD) [17], [18], [19], which derives a
reduced-order basis from instantaneous snapshots of vector
fields, and has been used extensively for extracting coherent
structures from turbulent flows [20], [21]. The POD is attrac-
tive due to its linearity. However, since the POD basis are
derived from the global flow behavior, the resulting coarser
space is comparable to the global flow decompositions. In
comparison, our approach provides a way to achieve both
spatial and temporal locality, and makes no assumption
about the global behavior of the flow.

Decompositions of vector fields are closely related to the
notion of frames of reference. In this context, the usual goal
is to define a new frame of reference to facilitate analysis of
flows, e.g., by extracting vortices moving along a back-
ground flow. The simplest approaches compensate for a
uniform background flow [22], [23], [24], [25], [26], usually
by employing the derivative of the flow. Several more gen-
eral frames have also been proposed; for a complete discus-
sion, see the survey by Pobitzer et al. [27]. The ideas
proposed in this paper are a generalization of the internal
frames of reference presented by Bhatia et al. [5], who used
the natural HHD [4] to split a given flow into internal (local
to the domain) versus external effects.

More recently, G€unther et al. proposed rotation-invariant
[28] and objective [29] detection of vortices throughminimiza-
tion of temporal derivatives in selected local neighborhoods.
Conceptually, this approach is similar to the one presented in
this paper as both techniques separate flow within a local
neighborhood into different components. However, G€unther
et al.’s approach [29] aims to minimize the temporal deriva-
tive rather than considering different spatial scales, which can
be a limitation since accurately estimating the temporal deriv-
atives requires sufficiently time-resolved data, which, espe-
cially for the large simulations of greatest interest, is rarely
available in practice [30]. Instead, the multiscale decomposi-
tion proposed here operates directly on individual velocity
snapshots; hence, it provides many practical advantages,
such as better computational cost, independence from tempo-
ral resolution, and easy applicability.

Although there exist many ways to define multiscale vec-
tor field representations, motivated by different goals and
based upon different mathematical theories, only one
approach (Tong et al. [13]) presents a multiscale decomposi-
tion, making it our primary competing approach and allow-
ing for a direct comparison.

3 FUNDAMENTALS

This section describes the mathematical foundations
required to present the discussion of our multiscale decom-
position. In particular, since the Helmholtz-Hodge decom-
position is defined using a set of Poisson equations, we
discuss the intuition behind the Poisson equation and an
important way to compute its solution before discussing the
relevant decompositions.

3.1 The Poisson Equation

The Poisson equation is one of the most fundamental
elliptic partial differential equations, and has the following
form:
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r2f ¼ �f in V; (1)

where f is called the source function, and f the potential func-
tion. The general solution to Equation (1) is given by a homo-
geneous and a heterogeneous part, written as f ¼ F þH,
wherer2F ¼ �f , andH is a solution of the Laplace equation,

r2H ¼ 0 in V;

and is called a harmonic function— a function with zero sec-
ond derivative. Equation (1) is solvable only up to an addi-
tive harmonic function, and therefore, a specific H must be
chosen in order to obtain a unique solution. Since a har-
monic function H has a constant slope in the given domain
V, it can be computed by using only the values at the
boundary, i.e., it is determined completely by the boundary
conditions.

For functions defined on infinite domains that tend to
zero at infinity, there cannot exist any nonzero harmonic
function. As a result, the Poisson equation can be solved
uniquely without any explicit boundary conditions; how-
ever, we note the implicit assumption of a far-field bound-
ary condition. For such cases, the fundamental solution to
the Poisson equation can be computed using an integration
kernel, called the (free-space) Green’s function, G1ðx; x0Þ,
which is given as

G1ðx; x0Þ ¼ � 1

2
jx� x0j x; x0 2 R;

G1ðx; x0Þ ¼ � 1

2p
log ðjx� x0jÞ x; x0 2 R2;

G1ðx; x0Þ ¼ 1

4pjx� x0j x; x0 2 R3:

(2)

The Poisson equation r2f ¼ �f on Rn, where fðxÞ ! 0 for
x ! 1, can be solved by computing the integral solution, i.e.,

fðx0Þ ¼
Z
Rn

G1ðx; x0Þ fðxÞ d x: (3)

A more detailed discussion on potential functions and inte-
gral solutions can be found in the literature [31], [32].

3.2 The Helmholtz-Hodge Decomposition

The Helmholtz-Hodge decomposition (HHD) [2], [33], [34]
decomposes a given vector field into three components: a
rotation-free, a divergence-free, and a harmonic vector field.
Consider a smooth vector field ~V : V ! Rn, where V � Rn

(for n ¼ 2; 3); then

~V ¼ ~dþ~rþ ~h; (4)

where ~d is rotation-free (r� ~d ¼~0), ~r is divergence-free
(r � ~r ¼ 0), and ~h is harmonic (r� ~h ¼~0 and r � ~h ¼ 0).
Thus, the following equalities are obtained:

r � ~d ¼ r � ~V ;

r�~r ¼ r� ~V :
(5)

To compute the decomposition, the components ~d and ~r are
represented as the gradient of a scalar potential D, and the
curl of a vector potential ~R, respectively. Substituting ~d ¼ rD
and~r ¼ r� ~R in Equations (5), we get two Poisson equations,

DD ¼ r � ~V ;

~D~R ¼ �r� ~V ;
(6)

where, D is the (scalar) Laplacian, that is, D ¼ r2, and ~D is
the vector Laplacian, i.e., ~D ¼ ðrr�Þ � ðr �r�Þ. The Pois-
son equations (6) are solved, leading to the components ~d
and ~r, and the harmonic component is then computed as
the remainder:

~h ¼ ~V � ~d�~r:

In two dimensions, the curl can be represented as a scalar
value in the normal direction to the domain, leading to a
simpler representation of ~r as the co-gradient of a scalar
potential R, that is, ~r ¼ JrR, where J is the p=2-rotation
operator [35, Eq. 16]. Consequently, the second Poisson
equation in (6) can be simplified as

DR ¼ �r � J ~V : (7)

For domains with boundaries, the solutions to the Poisson
Equations (6) and (7) are not unique, and usually, boundary
conditions are imposed to obtain uniqueness. Different types
of boundary conditions can be applied as suited for different
applications. A detailed discussion on the properties and
boundary conditions of the HHD can be found in a recent
survey [35].

3.3 The Natural Helmholtz-Hodge Decomposition

Recently, a new variant of the HHD, called the natural Helm-
holtz-Hodge decomposition, has been proposed that does not
require specification of boundary conditions to obtain
uniqueness. The natural HHD exploits the fact that the solu-
tion to the Poisson Equation (1) represents the influences
that are internal (defined by f) as well as external (unknown)
with respect to the given domain V. In this context, a
harmonic function is equivalent to the external influence
only, i.e., the potential generated by a source function
that is zero inside V and (possibly) nonzero outside V
(see [4, Section 2]).

Using this intuition, the authors proposed that theGreen’s
function, G1, can also be applied to a bounded domain
V � Rn by splitting the computation of f in Equation (3) into
two parts— insideV and outsideV, i.e.,

fðx0Þ ¼
Z
V

G1ðx; x0Þ fðxÞ d xþ
Z
Rn=V

G1ðx; x0Þ fðxÞ d x: (8)

They noted that the second integral
R
Rn=V � � �

� �
creates a

harmonic potential with respect to V, whereas the first inte-
gral

R
V � � �� �

leads to a nonharmonic potential with respect
to the given domain. As a result, one way to obtain a unique
solution to the Poisson Equation (1) on bounded domains is
by simply discarding the second integral. Such a solution
implicitly chooses to define the solution, f, to be affected by
internal influences only.

To compute the natural HHD, the Poisson Equations (6)
are solved by splitting the solutions into two parts as in
Equation (8), and then discarding the second part. Formally,
the scalar and vector potentials of the natural HHD are com-
puted as follows:
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Dðx0Þ ¼
Z
V

G1ðx; x0Þ r � ~V ðxÞ d x x; x0 2 V;

~Rðx0Þ ¼ �
Z
V

G1ðx; x0Þ r � ~V ðxÞ d x x; x0 2 V;

(9)

and the three components of the natural HHD as ~dðxÞ ¼
rDðxÞ,~rðxÞ ¼ r� ~RðxÞ, and ~hðxÞ ¼ ~V ðxÞ � ~dðxÞ �~rðxÞ.

3.4 Multiscale Representation of Tong et al. [13]

The technique most similar to the one proposed in that pro-
posed by Tong et al. [13], who extend a popular finite-element
approach [36] to compute the HHD for 3D tetrahedral dom-
ains. Their approach solves a least-squares system for the
Poisson Equations (6) using the boundary conditions,
r D � ~n ¼ ~0 and r~R � ~n ¼ 0, respectively. Once the two
potentials (D and ~R) have been computed, they smooth the
potentials, before recombining them to create a vector field,
which, in turn, is a smoother representation of the input data.

In order to provide a fair comparison with Tong et al.’s
approach, we make two modifications to their formulation.
First, their approach uses boundary conditions, which, as
discussed in detail elsewhere [4], [37], can create severe arti-
facts not present in our approach, as our technique extends
from the natural HHD. Therefore, we modify Tong et al.’s
formulation to instead use Equation (9), thereby avoiding
the otherwise present boundary artifacts. Second, since the
technique as discussed by Tong et al. has been designed pri-
marily for manipulating vector fields in graphics applica-
tions, not for a multiscale analysis of scientific data, their
decomposition does not explicitly handle the harmonic com-
ponent. In particular, the smoothed vector fields are com-
puted by applying a low-pass filter, gs , on the HHD

potentials: ~ds ¼ r gs �Dð Þ, and~rs ¼ r� gs � ~R
� �

. Here, the

high-frequency component would be defined as ~V � ~ds �~rs ,
which expands to ~hþ ~d� ~ds þ~r�~rs . This expression
means that the harmonic component, which conceptually
represents the global scale and can contain low-frequency
features only, would instead be represented as part of the
high-frequency flow, which is not desirable for scientific
analysis. Instead, we adapt Tong et al.’s approach to explic-
itly assign ~h to the large-scale component.

3.5 Integral Solution in the Fourier Domain

Equation (9) represents convolution of the divergence and
rotation of the field with the Green’s function. The original
paper on the natural HHD [4] computes the convolution
spatially, i.e.,

fðxÞ ¼ G1ðxÞ � fðxÞ; x 2 V; (10)

where G1ðxÞ 	 G1ðx; 0Þ, and � is the convolution operator.
Instead, we compute this convolution efficiently in the Four-
ier domain, although this computational gain costs some
accuracy at the boundary. Since spatial convolution is effec-
tively a weighted sum for discrete data, the boundary poses
few problems as the “missing samples”, i.e., the data out-
side the boundary, are simply taken to be zero. However,
the Fourier transform is defined only for a periodic signal,
and therefore, computing the transform of nonperiodic data
imposes additional high frequencies on the spectrum. We

also note that using windowing approaches, e.g., Hamming
or Tukey window, to make the data periodic is ill-suited for
vector fields because they create significantly worse artifacts
due to sharp gradients near the boundary. Although vector
fields of interest are almost always nonperiodic, in practice,
we found that the boundary artifacts due to a nonperiodic
Fourier transform are negligible for the large-scale flows of
practical interest. Furthermore, considering the computa-
tional advantage of convolution in the Fourier domain
(Oðn log nÞ) over that in the spatial domain (Oðn3Þ in 3D),
such artifacts are acceptable.

4 MULTISCALE DECOMPOSITION

This paper presents a newmultiscale kernel to solve the Pois-
son equation. We use the presented multiscale solution to
the Poisson equation to decompose vector fields using the
multiscale Helmholtz-Hodge decomposition. The defining char-
acteristic of this decomposition is that given a scale, the
flow is decomposed into two components, which contain
features with respect to the corresponding scale (akin to
low- and high-frequency components in filtering). In partic-
ular, the goal is to define a small-scale flow containing small-
scale features (local with respect to the given scale), with
the difference containing the remaining large-scale (nonlo-
cal) structures.

Tong et al. compute two potential fields, D and ~R, and
smooth them using a low-pass filter. They show that, using
the HHD, their approach can better preserve sharp features
in the flow, compared to direct linear smoothing of the vec-
tor field. Nevertheless, the artifacts of smoothing can still be
observed, e.g., the approach is not able to distinctly decom-
pose the flow into local versus nonlocal features, e.g., see
Fig. 5. We note that the smoothed potential field, Ds , used
by Tong et al.’s approach is given as

Ds ¼ gs � G1 � r � ~V
� �

;

¼ gs �G1ð Þ � r � ~V :

Thus, this approach is equivalent to solving the Poisson
Equation (6) using the integral solution (11), but using a
smoothed Green’s function as the integration kernel.

4.1 Multiscale Solution to the Poisson Equation

In order to explore the limitations of smoothing approaches,
and to develop a new multiscale decomposition of vector
fields based on the idea of “splitting” local versus nonlocal
effects, we propose a new multiscale filter to solve the Pois-
son equation. This section discusses the properties and
implications of the effective integration kernel of Tong et al.’
s approach, as well as our proposed kernel.

Given a Poisson equation, the goal is to find the potential
function with respect to a given scale, s. Traditionally, the
focus has been on the smoother function containing only
the large-scale components, but in many cases, the small-
scale, local components are as important.

Smoothing Approaches. There are two common strategies
to obtain the low-frequency component. As suggested by
Tong et al., one can smooth the potential function after solv-
ing the Poisson equation using the integral solution given
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by Equation (3), i.e., fs ¼ gs � f ¼ gs � ðG1 � fÞ; where gs is
a low-pass filter, e.g., a Gaussian filter. Alternately, one can
first simplify the source function leading to a simplified
potential, i.e., fs ¼ G1 � ðgs � fÞ: Since convolution is asso-
ciative, both these approaches are mathematically equiva-
lent to smoothing the Green’s function and then solving the
Poisson equation, i.e.,

fs ¼ ðgs �G1Þ � f: (11)

Using the distributive property of convolution, the implied ker-
nel for the small-scale component,cs , can be derived as follows:

cs ¼ f� fs

¼ G1 � f � ðgs �G1Þ � f
¼ ðG1 � gs �G1Þ � f:

(12)

Figs. 2a and 2c show the implied kernels for both small- and
large-scale components in the standard smoothing approa-
ches. As expected, the low-pass filter (red) smoothes out the
singularity at x ¼ 0, suppressing the convolution weights in
the immediate neighborhood. The high-pass filter (green)
captures the remaining weights. Although mathematically
valid, smoothing does not produce the desired result in the
physical sense of the Poisson equation, because despite sup-
pressing certain frequencies while retaining others, it fails
to maintain the spatial context of the Poisson equation. Note
how the local influences (at and near x ¼ 0) are distributed
between the two scales, and thus do not provide a clean sep-
aration into local versus nonlocal effects.

The Modified Green’s Function. Recall that the integral
solution (3) determines the potential f at a given point by
accumulating the net influence of the source function f at
all the points in the domain. Thus, a spatially relevant solu-
tion at a reduced scale can be obtained by explicitly control-
ling the weights in the (spatial) neighborhood of the given
point. Figs. 2b and 2d show our proposed kernel, whose
mathematical properties are discussed in the next para-
graph. In particular, note that the filter for small-scale fea-
tures (green) preserves not only the singularity, but also the
weights in the immediate neighborhood, thus capturing
local influences with higher fidelity. As a result, the corre-
sponding filter for large-scale effects (red) does not include
the point x ¼ 0 and suppresses the contribution of neighbor-
ing points. Furthermore, the large-scale filter preserves the
weights in the far-field. Such a kernel can be thought of as a
modified Green’s function, and is better suited to compute
multiscale solution to the Poisson equation.

Mathematically, the modified Green’s function can be
obtained by multiplying it by the Green’s function with a
suitable scaling kernel, ksðxÞ : Rn ! R, with the following
restrictions:

� For any given scale s,
– ksðxÞ ¼ 1 for x ¼ 0,
– ksðxÞ ! 0 for x ! 1,
– 0 
 ksðxÞ 
 1 for all x, and
– ksðx1Þ � ksðx2Þ for all jx1j 
 jx2j.

� For any two scales s1 < s2,
– ks1ðxÞ 
 ks2ðxÞ for all x.

Two simple choices for ks are a normalized Gaussian
function and a tent function, where the spread of the function
is proportional to s. For ks ¼ 1, the Green’s function remains
unchanged, and therefore, a full-scale solution is obtained.

The crucial difference with the smoothing approach is
that when using the modified Green’s function, compared
to Equation (12), we directly compute the small-scale poten-
tial, c�

s , as the integral solution to

c�
s ¼ ks �G1ð Þ � f: (13)

Smoothing versus Splitting. Conceptually, the modified
Green’s function is a high-pass filter, compared to the low-
pass filter given in Equation (11). However, since the pro-
posed modification (ks) explicitly constricts the Green’s
function in the spatial domain, our proposed filter is better
suited for “splitting” the local effects from nonlocal ones,
compared to the “smoothing” performed by low-pass fil-
ters. Next, we will demonstrate the advantages of the modi-
fied Green’s function in the context of vector fields.

4.2 The Proposed Multiscale Decomposition

Using the multiscale solution to the Poisson equation, com-
putation of the multiscale HHD is straightforward. In par-
ticular, the two small-scale potentials, denoted D̂� and ~̂R

�
,

respectively, can be computed as

D̂�
s ¼ ks �G1ð Þ � r � ~V ;

~̂R
�
s ¼ ks �G1ð Þ � r � ~V ;

(14)

giving the small-scale flow component,~l�s as

~l�s ¼ ~̂d
�
s þ ~̂r�s ¼ rD̂�

s þr� ~̂R
�
s ;

and the large-scale component as ~h�
s ¼ ~V �~l�s .

Fig. 2. Comparison of filters for computing the multiscale Poisson equation in 2D (a,b) and 3D (c,d). The effective filters for smoothing are shown in
(a) and (c) and those corresponding to the proposed Green’s function in (b) and (d). The red and green curves show filters for extracting large- and
small-scale components, respectively. As seen from the figure, the modified Green’s function maintains the weights in the local neighborhood (of
x ¼ 0) better, and thus, provides a “splitting” of local versus nonlocal influences compared to “smoothing” filters. We use a normalized Gaussian
(gsð0Þ ¼ 1) as the scaling function ks for all results in the paper.
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The intuition behind the multiscale HHD is schemati-
cally illustrated using Fig. 3. Without loss of generality, con-
sider a rotational vector field in 2D, and the solution of
Equations (14) for a single point, x0 (shown as a gray dot)
for three scales, s1 > s2 > s3. The corresponding scaling
functions gradually and smoothly scale the Green’s function
down to zero for the neighboring points in an isotropic
manner. The blue, green, and red circles in the figure show
the distances from x0 (the gray dot), where ks �G1 becomes
negligible for three scales, respectively.

Zooming into the three circles separately, the figure
shows only the flow considered by Equations (14) for x0 for
the different scales. The solution to these equations considers
the divergence and rotation only in the corresponding region,
and “approximates” a vector at x0 that best describes the
divergence/rotation within the domain, thus capturing the
phenomena that are local with respect to the given scale. These
ideas generalize to compressible flows where the local phe-
nomena capture both compressibility and rotation. Further-
more, following the discussion in Section 3.3, any
divergence/rotation at the points outside these boundaries

creates a harmonic flow with respect to the corresponding
region.When combined globally, the slidingwindow implied
by the convolution operator allows removing the larger-scale
rotationwith respect to the smaller regions in the domain.

When the entire given domain is considered, this app-
roach is equivalent to creating the (globally) harmonic flow
[5]. On the other hand, with decreasing scale, the given rota-
tional field disappears from the small-scale component, and
contributes to the large-scale part. For the smallest scale in
this experiment, the rotational component is zero, whereas
the large-scale component is no longer harmonic and con-
tains all of the rotational field. Indeed, in the limiting case of
an infinitely small neighborhood, the multiscale decomposi-
tion creates a Lagrangian viewpoint, where the entire
motion is seen relative to a given observer, who is consid-
ered to be at rest.

4.3 Multiscale Decomposition of Unsteady Flows

The description of our multiscale decomposition framework
depends only on the spatial derivatives (on the divergence
and curl) local to a spatial neighborhood. Indeed, the inde-
pendence from the temporal dimension is a key characteristic
of our framework. Given a temporally smooth unsteady flow,
the decomposition can be applied to each time-step individu-
ally to produce a temporally smooth unsteady decomposition
that captures themultiscale behavior of interest.

5 RESULTS

We demonstrate our multiscale decomposition on simu-
lated flows, a jet in crossflow and a lifted ethylene flame,
both of which are expected to contain nested vortices across
scales.

5.1 Jet in Crossflow

Our first test case is a common type of turbulent flow: a jet
in crossflow [38], which is a fundamental flow phenomenon
relevant to many engineering applications, e.g., film cooling
of turbines, fuel injections, and dilution jets in gas-turbine

Fig. 4. (a) Illustration of a jet in crossflow and the different types of vortical structures associated with this flow; the most important, and yet the most
elusive to find, is the counter-rotating vortex pair, which represents weak, large-scale rotation, typically not detectable using standard approaches in
the original flow (not shown) or existing decomposition techniques. (b) The local flow (as defined by Bhatia et al. [5]) on the slice as a LIC image and
the corresponding global flow as streamlines. The expected vortices are too small to influence the global flow but are also not easily recognized in
the superposition of all nonglobal effects (LIC). (c) The proposed multiscale decomposition at an appropriate scale, which highlights the vortex pair in
the large-scale component (streamlines) and well-defined nested vortices in the small-scale component (LIC).

Fig. 3. Considering neighborhoods of varying sizes allows creating a
multiscale decomposition by representing different amounts of rotation
(and divergence) as nonlocal effects. Aggregating only the local effects,
thus, amounts to creating a small-scale flow, i.e., containing only the fea-
tures at or below the given scale. For example, as the smallest neighbor-
hood (red) sees a mostly laminar flow, the corresponding small-scale
features have little rotation, and the large-scale rotation can be used to
effectively create a rotational frame of reference.
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combustors. The experimental set-up contains an injection
of flow through a jet at the bottom in the presence of a
strong background flow in the transverse direction, the
crossflow, as illustrated in Fig. 4a. The goal of the experi-
ment is to study different types of vortical structures created
by the interaction of the burning jet with the crossflow.

Important structures in this flow include a pair of
counter-rotating vortices, which occur as a result of the
impulse of the jet on the crossflow, and become dominant in
the far field. Experts speculate that various smaller vortices
are nested inside these larger counter-rotating vortices.
However, due to the turbulent nature of the phenomenon,
these large, but weak, vortices are overpowered by the
smaller and stronger vortices, making them difficult to
extract using standard approaches. Previously, by compen-
sating for the global harmonic background flow, Bhatia
et al. [5, Fig. 11] used internal reference frames to extract
and highlight these features of interest.

Using Fig. 4, we show that our proposed technique
improves upon their approach by enabling the extraction of
these vortices through a multiscale decomposition of the
flow directly on a relevant 2D slice (in xy plane). In particu-
lar, Fig. 4a shows the existing decomposition [5], which
shows turbulent behavior in the local component, and that
the global component is a harmonic flow with very low
magnitude. Such behavior is observed due to a lack of sepa-
ration of scale of vortices. The results of the proposed multi-
scale decomposition for a selected scale are shown in
Fig. 4c. As seen in the figure, the nonlocal component cap-
tures the counter-rotating vortices, thus creating a rotational
frame of reference for the smaller, nested vortices, which
can be found in the local component. Advancing the state of
the art from the global decomposition, this result allows
domain experts to simultaneously analyze both types of
vortices (nested as well as counter-rotating) to understand
the effects of simulation parameters. We note that the

Fig. 5. Multiscale analysis of a jet in crossflow. (a) The original velocity field at the center of the jet, within the lateral direction (xz-plane); (b) the high-
frequency component of a traditional scale-space analysis showing a number of unphysically distorted regions; (c) the high-frequency component
using Tong et al.’s multiscale decomposition [13] shows fewer artifacts but still fails to resolve the flame; and (d) the small-scale flow computed by
the proposed technique resolves the expected behavior on top of the flame. In this comparison, only the proposed decomposition correctly identifies
the reverse flow above the jet, indicating the drag induced by the turbulent flame on the crossflow.
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projection step to compute the xy slice for this experiment
discards the crossflow, which is orthogonal to the chosen
slice, since the experiment focuses largely on the counter-
rotating vortex pair.

We next analyze the data in an orthogonal direction, on a
xz slice through the center of the jet (see Fig. 5). In this case,
the goal is to study the features around the flame, and there-
fore, the projection discards the y component of the flow,
which although not zero, is negligible compared to the strong
crossflow. The given flow, as shown in Fig. 5a, highlights the
jet emerging from the bottom of the domain, as well as
the strong crossflow in the lateral direction. Fig. 5d shows the
small-scale flow obtained through our approach. At the cho-
sen scale, the resulting flow captures not only the jet, which
contains a series of small but strong jet shear-layer vortices,
but also a number of other turbulent structures in the domain.
Althoughmany similar structures are observed when Gauss-
ian filtering (Fig. 5b) and Tong et al.’s approach (Fig. 5c) are
applied for the same s, what distinguishes the three results
is the shape and direction of the flow above the jet flame as it
moves to the right. Our decomposition highlights the
expected (mostly laminar) flow around the flame. Note that
in the small-scale component, i.e., relative to the strong cross-
flow, the flow direction is inverted, indicating the drag the

flame induces on the surrounding flow. The other appro-
aches resolve the same features in the simple, nonturbulent
flow directly at the front of the flame, but fail to do so in the
more complex environment at the back of the flame.

Next, in Fig. 6, we present the multiscale decomposition
on the same xy slice for progressively smaller s, thus focus-
ing on increasingly smaller vortices. The figure shows the
expected correspondence between the size of our integration
kernel and the size of the vortices observed. Results like this
can be used to explore the distribution of features, e.g., vorti-
ces at different scales, and the resulting energy cascading
effectswith respect to scale. The scale-space of features is fur-
ther discussed in Section 5.3.

Finally, the multiscale HHD can be used directly on the
3D flows as well. Fig. 7 presents the decomposition for two
different scales; the figure shows the magnitude of vorticity,
as well as the LIC visualization of a slice (computed after
performing the 3D decomposition). As can be seen from the
figure, the proposed multiscale decomposition highlights
smaller scale features in the flow. It is important to note that
the HHD (and hence the proposed multiscale approach)
does not commute with the 2D projection (slicing) operator;
therefore, unsurprisingly, the LIC visualizations in Fig. 7
show different flows than those in Fig. 6.

Fig. 7. Local (high-frequency) components of the JICF computed using the proposed decomposition at full scale (left) and a smaller scale (right,
s ¼ 0:925mm) show substantial differences, with the latter focusing more on finer features. The images show the vorticity (log-mapped to the shown
color scale) superposed on the LIC visualization of the flow through the center of the flame, highlighting the difference in flow structures.

Fig. 6. Multiscale decomposition of the flow shown in Fig. 5a defined on a 20� 25mm domain at decreasing scales (s ¼ 6:67; 3:70; 1:48mm) from left
to right. One interesting structure is the single dominant vortex under the jet arch highlighted at the largest scale. Subsequent scales show succes-
sively smaller vortices, confirming the intuition of nested vortical structures.
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5.2 Lifted Ethylene Jet Flame

Next, we analyze a direct numerical simulation of a turbu-
lent lifted ethylene jet flame [39], which represents a com-
pressible and highly turbulent flow. In this case, fuel is
injected from the left of the domain, creating a strong back-
ground flow toward the right. This type of flow is well stud-
ied, and is known to contain nested turbulent structures.

Therefore, this data provides important validation for our
approach. Fig. 8 shows the given flow as well as the local
components of our multiscale decomposition for a variety
of scale parameters. At the full scale, the local component is
heavily influenced by the divergence created by the jet. At
the next scale shown, however, almost all the divergence
has been removed from the local component, and the result-
ing flow shows nested vortical structures. In particular,
with decreasing scale, increasingly smaller rotational fea-
tures are observed.

5.3 Stability of the Multiscale Decomposition

Scientific data, like the ones discussed above, rarely pro-
vides a “ground truth” against which validity of a new tech-
nique may be established. However, it is known that
physically relevant features must be stable with respect to
the multiscale decomposition [10], [40]. Therefore, we dem-
onstrate the stability of the features identified through the
proposed decomposition.

We revisit the xz and yz slices of the jet in crossflow dis-
cussed earlier, and compute the decomposition for a wide
range of scales. We compute the critical points of the result-
ing fields in a numerically robust manner [41] and track
them over scales, i.e., compute mapping of critical points
within adjacent scales using spatial distance. As shown in
Fig. 9a, the “scale-space” of critical points computed in the
manner described above shows long and stable paths of criti-
cal points, suggesting that several features remain persistent
over the considered range of scales, although some are
indeed short-lived, and limited in scale. In particular, many
of the strong vortices in the (xz-s domain; left of Fig. 9a) span
a wide range of scales. Furthermore, the result for the yz-s
scale-space shows a larger number of shorter tracks, indicat-
ing thatmany identified features are limited in scale. A closer
examination shows the equivalent of Hopf-bifurcations in
scale space with pairs of counter-rotating vortices appearing
at smaller scales. Despite the seemingly noisy figure, the
merging of many of the tracks can be noticed (especially in
the yz-s scale-space). These features represent smooth and
stable merging of features, confirming that the decomposi-
tion does not create artifacts in the form of suddenly appear-
ing critical points (except at the boundary of the domain).
The xz slices also contain some prominent vortices that are
long-lived yet shift their position significantly throughout
the scales. This phenomenon is well known in scale-space
analysis, and indicates that these structures are relevant (and
stable) for some but not all scales.

5.4 Multiscale Decomposition of Unsteady Flows

To demonstrate the decomposition of unsteady flows, we
create a steady flow with four rotating centers [28] and add
to it a time-varying unsteady vortex. The resulting flow rep-
resents a key test case where the flow behavior of a larger
vortex may overwhelm that of smaller vortices. For exam-
ple, in our test scenario, even though the four centers are
stationary, the pathlines, which are also affected by the
unsteady rotation, fail to swirl around and capture the sta-
tionary (and known) centers of rotation (Fig. 1a).

Fig. 1 also visualizes the small-scale and large-scale com-
ponents with respect to a chosen scale. The small-scale flow

Fig. 8. Velocity field of a lifted ethylene jet flame (top) in a domain size of
20.25�8.0 units is decomposed into its local component at the global
scale (second from top), which highlights a strong through flow, but fails
to resolve nesting of vortices. The next three images show the multiscale
decomposition for decreasing scales, s ¼ 2.0, 1.0, 0.6 units, respec-
tively, which demonstrate increasingly smaller vortices, nested inside
prominent counter-rotating vortices.
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in this case is able to completely capture the stationary cen-
ters of rotation, as seen both by the LIC visualization as well
as the swirling pathlines around the centers. In contrast, the
large-scale flow captures the time-dependent rotation in the
flow, and highlights its larger spatial span (scale).

Next, Fig. 9b visualizes critical point tracking for the
time-varying lifted flame for a single scale. As can be
noticed from the figure, most critical points persist over the
entire time span and show stable paths, indicating temporal
stability in the results computed using individual time-
steps. This result is different from Fig. 1 in two ways. First,
we show the temporal stability of critical points as com-
pared to pathlines swirling around known vortices in Fig. 1.
Second, whereas the centers of rotation in Fig. 1 were sta-
tionary, the critical points in the lifted flame are unsteady.
Our experiments illustrate a temporally smooth, multiscale
decomposition of unsteady flows, which is able to extract
the evolution of multiscale features by decomposing indi-
vidual time-steps of unsteady flows.

5.5 Implementation and Performance

The computation of the natural HHD as described by Bhatia
et al. [4], and further improved upon by us (see Section 3.5),
requires (1) gradient, divergence, and curl operators; (2) a
convolution operator; and (3) the computation of the Green’s
function, G1. The proposed multiscale decomposition addi-
tionally requires (4) the computation of the scaling kernel,
ks , and (5) the multiplication of ks withG1. It is important to
note that since steps 4 and 5 always perform a single multi-
plication (per grid point) irrespective of the chosen scale, the
computational cost is independent of s. We have prototyped
this pipeline in Python, leveraging the inbuilt functionalities
provided by numpy and scipy, thereby allowing the imple-
mentation of the entire approach in about 120 lines of code.

The time to compute the decomposition for a flow defined
on [1408 � 1080] slice is �3.3 seconds on a standard laptop
computer. The 3D computation is more intensive, as convo-
lution steps take �347 seconds each for a [352 � 275 � 270]
dataset, making the time needed for four convolutions

� 92% of the total time. Since the primary computational bot-
tleneck is solving 3D convolutions, we are exploring the
fftw library [42], which is likely to be more optimized than
scipy’s implementation. Nevertheless, our approach pro-
vides a computational gain of several orders of magnitude
over the previous work [4], which reported requiring �290
seconds for a 2D decomposition on a [800� 2025] grid using
144 processes for spatial convolution.

6 CONCLUSION

We present a new perspective on creating multiscale repre-
sentations for vector fields. Unlike conventional scale-space
approaches, which operate primarily in the frequency
domain and perform smoothing of the given data, our tech-
nique is motivated by the physical intuition of splitting the
flow into components corresponding to spatial scales. We
present a new multiscale kernel for Poisson equation to sup-
port splitting operations. We show that the proposed
approach allows separating phenomena existing at different
scales, and extracting features that are stable and physically
meaningful. Since it is based on convolutions, the proposed
approach is robust against noise. Several of our results
show features that are expected, but have not been directly
observed previously. Furthermore, the features generated
by the proposed decomposition are stable in the scale-space,
which is well known [10], [40] to be a strong indicator of
physical relevance of features. As a result, we argue that
our technique is well suited for simultaneous visualization
and analysis of flow features at different scales.

Our approach is based on potential theory, which pro-
vides amathematical framework to represent the underlying
Poisson equations at multiple scales using the proposedmod-
ified Green’s function. The discussion presented in this paper
is valid for 1D, 2D, and 3D vector as well as scalar functions,
although the current work has beenmotivated by the need to
represent multiscale flow features. We would like to investi-
gate the applications of the multiscale Poisson equation for
scalar functions as well.

Fig. 9. Stability of the proposed decomposition can be demonstrated by studying features of the components across scale and/or time. (a) The paths
of critical points in the “scale-space” for two orthogonal slices of the jet in crossflow for s 2 [0.0925, 9.8975]. (b) The paths of critical points across
time for the lifted flame show. All paths are colored yellow–red with increasing persistence (approximated as the length of the paths). Long stable
curves and smooth merging of curves demonstrate that the proposed decomposition produces stable features, with respect to both scale and time.
The bounding slices are visualized with the magnitude of the local flow mapped to the color scale ([0,303] for (a) and [0, 257] for (b)).
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This paper describes a framework to decompose a flow
with respect to scales; however, a current limitation is the
lack of understanding of how to choose an appropriate
scale. We are currently exploring this question and plan to
consider transfer of energy across scales to find distin-
guished scales that are meaningful for analysis.

We note that the multiscale effects in 3D appear
muted when compared to the 2D results, i.e., the flow
features vary less across scales. One explanation is that
the 3D Green’s function is much narrower than its 2D
equivalent, as shown in Fig. 2. As a result, even at the
full scale (i.e., [5]), the 3D results are already very local-
ized, and therefore, further restricting the kernel has less
of an impact. As part of future work, we would like to
better understand this effect and explore new scaling
functions for 3D. For example, one might artifically
inflate the 3D Greens’s function, and thus extract fea-
tures at scales larger than what we now consider
“global”, although it is unclear how this would connect
to the mathematical theory. Alternatively, one might find
that a 3D harmonic flow can simply represent a much
richer set of structures than a 2D harmonic. Such a find-
ing would explain how the global background flow in
3D is able to express much of the complexity, leaving
few structures for the local component. In this case, one
might consider adding additional constraints on the
background flow, e.g., by restricting it to lower frequen-
cies, i.e., smoother flows.

Although defined using a spatial kernel, our approach is
directly applicable to computing multiscale decomposition
of unsteady flows by decomposing individual snapshots.
Our results demonstrate that not only does the presented
method preserve the temporal stability of data, but is also
able to extract stationary or nonstationary features with
respect to scales. Decoupling the temporal dimension from
the analysis offers significant advantages for large-scale
data, where limited I/O bandwidth makes the availability
of data at sufficient temporal resolution prohibitive [30]. As
compared to the techniques that compute temporal deriva-
tives, which makes them susceptible to errors at insufficient
resolution, our approach is agnostic to the temporal sam-
pling rate, and produces temporally smooth decomposi-
tions given temporally smooth flows, thus alleviating the
dependence on high temporal resolution. Additionally,
processing time-steps of unsteady flows independently
makes the approach embarrassingly parallel.

One intriguing interpretation of the multiscale decompo-
sition is to consider the results in the context of new frames of
reference, i.e., as a multiscale extension of the internal refer-
ence frames [5]. Traditionally, flow fields have been consid-
ered primarily in two frames of reference: the Eulerian
frame, used by most simulations, and the Lagrangian frame,
moving along each particle. The internal frame [5] (and
related ideas, such as the local flow [43]) adds an interme-
diate frame that roughly corresponds to a single global
observer moving with a background flow. Conceptually, the
multiscale decomposition proposed here adds a continuous
scale of observers corresponding to different spatial scales,
which can be seen as a continuous set of frames that cover
the entire range from the Lagrangian viewpoint (infinitely
small scales) to the Eulerian viewpoint (infinitely large

scales) and anywhere in between. Our results show a number
of expected features in well-known flows and demonstrate
that intermediate scales do extract physicallymeaningful fea-
tures. However, going forward, it will be crucial to develop
both theory and algorithms to determine which scales are
most important for any given flow and how to connect the
results to the intuition on local flow behavior.
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