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Abstract 

Multiscale modeling has a long history of use in structural biology, as computational biologists 

strive to overcome the time- and length-scale limits of atomistic molecular dynamics. 

Contemporary machine learning techniques, such as deep learning, have promoted advances in 

virtually every field of science and engineering and are revitalizing the traditional notions of 

multiscale modeling. Deep learning has found success in various approaches for distilling 

information from fine scale models, such as building surrogate models and guiding the 

development of coarse-grained potentials. However, perhaps its most powerful use in multiscale 

modeling is in defining latent spaces that enable efficient exploration of conformational space. 

This confluence of machine learning and multiscale simulation with modern high-performance 

computing promises a new era of discovery and innovation in structural biology. 
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Highlights 
 

• Modern machine learning techniques have revitalized the traditional notions of multi 

scale simulations through leveraging massive amounts of data. 

 

• Novel deep learning based methods have been developed to build coarse-grained force 

fields using finer-resolution simulations, as well as translating coarse-grained structures 

to atomistic ones. 

 

• The use of machine learning to define relevant latent spaces that can automatically steer 

simulation ensembles on modern supercomputers offers new approaches for efficient 

exploration of conformational spaces. 
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1 Introduction 
 

The time- and length-scales accessible to any given type of modeling and simulation technique 

are limited. Despite consistent advances of modern computing technologies, the need to utilize 

different simulation models persists, each with different levels of resolution and fidelity as well 

as varying computational requirements. Multiscale simulations are key to circumventing these 

limitations, as they facilitate combining information and/or models that capture different spatial 

or temporal scales. Multiscale frameworks address the contention between access to long- and 

large-scale dynamics and the computational viability of high-fidelity models. Indeed, multiscale 

techniques now form the backbone of scientific enquiries in structural biology(1-12) and almost 

all other areas of science and engineering(1, 4, 5, 8-10, 12, 13). 

 

Multiscale approaches in the field of structural biology encompass a wide range of topics, and 

the study of complex membrane-protein systems is an important area of investigation and has 

been used for developing multiscale methods. Developing methods for distilling information 

from one scale, e.g., all atomistic (AA) resolution to coarse-grained (CG) models or vice versa, 

are ubiquitous(14, 15). Accelerated molecular dynamics (MD) and enhanced sampling 

methods(16) are also crucial for computational modeling and simulations of complex biological 

systems. In this perspective, we focus on a rapidly evolving class of techniques for facilitating 

multiscale simulations for structural biology — those that utilize machine learning (ML). 

 

1.1  Machine Learning for Multiscale Simulations  

 

The past decade has seen ML technologies, in particular, deep learning (DL)(17), creating 

capability with far-reaching implications in structural biology. DL models are considered 

universal function approximators(18, 19), i.e., they can approximate any complex but continuous 

mapping between inputs and outputs through an appropriately designed neural networks (NNs). 

This property obviates the need to define such mappings a priori, instead learning necessary 

function approximations through vast amounts of data. The tremendous growth in computing — 

consequential for simulating new data and training DL models — as well as advances in modern, 

higher-throughput instruments for data capturing (such as X-ray, cryo-EM and NMR) is enabling 

DL to play an integral role in contemporary biological applications. 

 

DL techniques are influencing multiscale modeling and simulations in numerous ways(20, 21). 

For example, DL systems have shown great success as surrogate models(22) as well as in 

generating spatial structures from sequences of amino acids(23, 24) and highly accurate CG 

force fields for specific biological systems(25, 26). DL is also being used in novel ways for 

analyzing complex data, e.g., capturing membrane lipid fingerprints at different scales(27, 28). 

ML-based techniques (including DL) are also playing key roles for steering large ensemble 

simulations(11, 29, 30). 

 

An important and noteworthy application of DL in structural biology is the technology to 

accurately predict low-energy protein structures from linear sequences of amino acids. In 

particular, AlphaFold(23) has outperformed the traditional methods of predicting protein 

structures(24, 31, 32). Despite the impressive success and potential of AlphaFold(33), some 

challenges remain(34), such as predicting multi-protein components, metal ions, cofactors, and 



  

 

  

 

other ligands. To overcome these challenges, there are various efforts underway to capture 

protein interactions, such AlphaFold Multimer(35), RoseTTAFold(36), and ESMFold(37). 

Although such methods facilitate working across “scales” (i.e., primary to tertiary structures), 

they are not considered multiscale techniques it the usual sense. As such, although they offer 

substantial promise for structural biology, they will not be discussed further in this review.  

 

Traditional multiscale approaches have been classified as serial or parallel(38). Serial or 

sequential multiscale methods resolve or collapse degrees of freedom across scales a priori and 

utilize information from the finer scale to parameterize coarser scales and/or sampling at coarser 

scales to instantiate the finer scale. Parallel or concurrent multiscale methods, on the other hand, 

are coupled and perform cross-scale information exchange inside the running multiscale 

simulations, where specific region or molecules of interest are often represented at a finer scale 

and coupled, through specific annealing regions or using cross-scale parameters, to a coarser 

scale used for the bulk environment. Recent works on ML-driven ensemble-based, coupled 

multiscale simulations(11, 30) leverage the simplicity of serial multiscale methods while 

coupling in parallel the coarser macro model to continue improvements from concurrently 

running finer-scale simulations. 

 

 
Figure 1. A contemporary pipeline for automated, ML-driven multiscale simulation in biology (adapted from the work of 

Ingólfsson et al.(30)). Coupling two scales encompass several operations, each of which may utilize traditional approaches or 

leverage ML. In this review, we discuss the existing and potential use of ML in these operations. 

 

In this paper, we focus on two broad applications of ML for facilitating multiscale simulations in 

structural biology. The first is in the context of scale bridging. Several ML techniques have been 

proposed to transform data from one scale to another, e.g., coarse-graining of AA 

configurations(39-41), as well as backmapping approaches, e.g., from CG to AA(42-44). The 

second class of techniques focus on sampling and control of simulations using ML, e.g., to 

identify when and where to promote configurations to finer scales(23, 24) or to stop simulations 

that explore uninteresting regions of phase space(45). Both class of techniques are key to 

enabling large multiscale simulations, especially when leveraging modern computing resources. 

 

1.2  ML-driven Automation of Multiscale Simulations — Steps towards Exascale 

 

The unprecedented scale of modern computing resources offers exciting opportunities for 

scientific applications; accompanied are many challenges in making efficient use of these 

software and hardware resources. The high-performance computing (HPC) community is 



  

 

  

 

moving away from large and monolithic codes to sophisticated workflows(46-49) that create 

massive simulation ensembles. Traditional metrics for scaling, such as strong and weak scaling, 

are getting replaced by the need for simultaneous utilization of heterogenous resources, tailored 

to the needs of multiscale. ML-based techniques have demonstrated immense value in 

facilitating such a vision through automated/semi-automated frameworks that rely on ML to 

generate targeted or exploratory ensembles of multiscale simulations(11, 30, 50-54). Multiscale 

frameworks powered by ML are paving the way for a new revolutionary approach for studying 

scientific phenomena. Such methods are likely going to be the centerpiece of computational 

sciences in the Exascale era. 

2 Key Research Directions 
 

Among the numerous ways ML is revolutionizing the field of multiscale simulations, we discuss 

two broad classes, namely, for supporting the coupling of resolution across scales and for 

facilitating ensemble multiscale simulations. 

 

2.1  ML for Resolution Coupling 

 

Transformation of data representations (from coarser to finer resolutions, or its inverse) has 

traditionally been performed using data-driven statistical models, guided through expert 

knowledge. Innovations in ML and, especially, DL, have revamped such efforts by leveraging 

vast amounts of data. Compared to the traditional techniques, which focus on unidirectional 

coupling, bidirectional coupling allows information flow from both ends, e.g., from fine to 

coarse resolution and back, ensuring a greater degree of consistency in the multiscale simulation. 

Recent works have furthered the reach of DL technology through automated bidirectional 

coupling of resolutions. Section 2.2.1 describes a novel capability that exploits ML to enable 

such a coupling on the fly, assimilating information at fine and coarse resolutions, each to 

improve the fidelity of the other.  

 

2.1.1  ML for Learning Force Fields 

 

Time- and length-scales beyond the limits of AA simulations can be achieved by using CG 

models(55-58). Traditionally, CG models are derived by either analyzing finer-resolution 

simulations (bottom-up)(59) and/or by tuning interaction potentials to capture a suite of known 

properties (top-down). Being data driven in nature, such tasks are getting relegated to ML due to 

its capability to learn CG force fields. 

 

Recent years have seen successful application of various DL methods to build CG force fields 

from AA training data, and many different types of DL technologies have been utilized(40). For 

example, NNs to build many-body CG potentials(25), to construct effective CG Hamiltonian 

based on high-dimensional free energy surface(60), NNs(26) or graph convolutional NNs(41) to 

generate coarse-grained free energy functions via force-matching scheme, NN-assisted particle 

swarm optimization method for CG force fields(61), and generative adversarial networks 

(GANs) to optimize CG force fields(62). The advantages of ML-driven force fields over classical 

methods include incorporation of many-body interactions and nonlinearities as well as the ability 

to optimize the model using training data at different thermodynamic states. However, ML force 



  

 

  

 

fields are typically constructed for specific systems under defined circumstances, and they are 

generally not transferrable. ML-based force fields have been applied successfully to small 

systems, where the training set can encompass a comfortable fraction of the entire phase space. 

Nevertheless, unexpected challenges may arise when extending these models to larger and more 

complex systems, as the training set becomes a smaller and smaller fraction of what is possible. 

Further developments are necessary to make ML force fields more generalizable and use them 

for larger and more complex molecular systems. 

 

2.1.2  ML for Parameterization of MD Potentials 

 

As discussed above, NNs trained on high-resolution simulation data in a bottom-up fashion have 

been highly successful in recent works. On the other hand, top-down approaches, which learn 

MD potentials directly from experimental data have been less studied, largely due to 

computational difficulties, such as numerical issues.  

 

Such issues are starting to be addressed through automatic differentiation (AD) techniques(63). 

Specifically, a recently developed method, Differentiable Trajectory Reweighting (DiffTRe)(64), 

can train NNs on experimental data with lower computational effort. Leveraging the power of 

AD in combination with existing MD reweighting techniques, DiffTRe eliminates the need to 

differentiate through the simulation and provides end-to-end gradient computation. DiffTRe can 

also be used as a bottom-up model parameterization scheme without any additional changes by 

using target observables from a high-fidelity simulation instead of an experiment. 

 

DMFF (Deep Modelling Force Field, or Differentiable Molecular Force Field)(65) is another 

platform that utilizes AD to comprehensively implement both conventional molecular force 

fields and advanced multipolar polarizable models. DMFF provides differentiable estimators for 

energies, forces and thermal dynamic quantities, which enable the definition of corresponding 

objective functions, making both bottom-up and top-down optimization workflows possible. 

 

2.1.3  ML for Learning QM/MM Potentials 

 

The Quantum Mechanics/Molecular Mechanics (QM/MM) approach(66) is a widely used 

method for overcoming the computational bottlenecks associated with quantum calculations for 

describing molecular interactions and chemical reactions. It combines a QM description of the 

region of interest with a realistic modelling of the surrounding environment, typically using 

either mechanical or electrostatic embedding schemes. Despite the reduced computational costs 

compared to full ab initio simulations, these simulations are not sufficient for resolving the 

phenomena occurring at longer length- and time-scales. To further reduce the computational 

cost, semi-empirical methods are used to describe the QM zone, though at the cost of accuracy of 

the simulations.  

 

Recent works have seen significant impact of ML techniques in the QM/MM paradigm(67). 

Broadly, by replacing the simulated QM and/or MM potentials with those learned using ML can 

offer improved accuracy while reducing the computational cost of ab initio QM/MM 

simulations(68-71). For example, it has also been shown(71) that DL models can be trained to 

accurately reproduce both the QM and MM forces, as well as the differences between the ab 



  

 

  

 

initio(72) and the sub-empirical forces(68). Such techniques enable the calculation of accurate 

free-energy barriers for various solution-phase reactions in these systems(71, 73). DL-based 

potentials have also been utilized to reweight the free-energy profiles of reactions (e.g., the 

proton transfer reaction of glycine in water) from a QM/MM approach (69). An adaptive 

QM/MM-NN framework was also proposed to perform direct MD simulations on the potential 

energy surface predicted by DL in order to approximate ab initio QM/MM MD(72).  

 

Although the use of DL in QM/MM MD simulations is impactful and shows much promise, such 

techniques are still computationally expensive, in that the computational cost is now transferred 

from running the simulations to training DL models and searching for suitable ones. 

Furthermore, DL-based potentials, despite their documented success, still require more rigorous 

validations to ensure reliability, which may require developing expertise across the domains. 

 

2.1.3  ML for Backmapping 

 

Although some research questions can be appropriately addressed using a CG representation, 

many require access to AA resolution to obtain some of the observables of interest. 

“Backmapping” methods, which transform CG to AA representation, therefore play a vital role 

in studying complex biological systems. Traditional methods perform backmapping by guessing 

the positions of atoms (e.g., based on random mapping(74), or geometry-(75) or fragment-

based(14) positioning) followed by energy minimization to produce realistic atomic 

configurations. 

 

Advances in ML now enable the development of more general methods that can efficiently and 

accurately map different scales for various biomolecules, such as lipids, polymers, and proteins. 

These ML-based methods can translate low resolution CG structures to finer, AA structures 

without needing system-specific information, such as molecular structures and force fields. In 

this context, non-DL methods, including k-nearest neighbors, Gaussian process regression, and 

random forests, as well as NNs have been utilized for backmapping(42). More recently, 

variational autoencoders (VAEs)(39), GANs(43, 76) and multilayer perceptrons (MLPs)(44) 

have also been successfully applied to backmap CG models to AA models (see Figure 2 for an 

example). These methods are capable of learning parameters associated with the system from 

information such as pairwise interatomic distance matrices or distance/orientation vectors, which 

makes them very generalizable and straightforward to implement, and they can be easily applied 

at different levels of coarse-graining. However, the current applications are limited to small 

system sizes, as these are still in early stages of development and have a high memory 

requirement of the underlying NNs. Another area of improvement is to marry these purely data-

driven methods with existing domain knowledge, such as known interactions and restraints. As 

the community moves towards more sophisticated backmapping methods, these are likely to play 

a key role in facilitating complex multiscale simulations. 

 



  

 

  

 

 
Figure 2. The recent work by Duong et al.(44) uses a multilayer percepteron (MLP) — a neural network with only fully-

connected layers — to learn how to predict a pairwise distance matrix of atoms, given a contact matrix (a binary matrix 

representing spatial proximity within some distance threshold) of coarsened proteins structure. The predicted distance matrix is 

then converted into 3D spatial coordinates using the multidimensional scaling (MDS) approach and resulting structure 

equilibrated. This approach marks an important step towards developing DL methods for backmapping; howeser, this method is 

limited to small molecules, in part, due to the large computational requirement of MLPs. Figure reproduced from the original 

article(44). 

 

2.2  ML for Ensemble Multiscale Simulations 

 

The fundamental idea behind ensemble multiscale is to explore by sampling some reduced 

representation that faithfully captures the substantially larger and more-complex phase space of 

the system to be simulated(77-79). To this end, such ideas seek to find a few generalized degrees 

of freedom that can separate metastable states, drive the sampling of the phase space, and 

facilitate achieving longer timescales than otherwise possible(80). 

 

2.2.1 ML-driven Sampling Frameworks 

 

DL methods are now replacing the use of the traditional “collective variables” with data-driven 

“latent spaces”. For example, Gaussian process models(81), NNs for Bayesian learning(82), 

autoencoders(83), variational models(84), reinforcement learning(85), and MLPs to learn 

stochastic neighbor embedding(86) have all been successfully utilized for enhanced sampling. 

DL has also been utilized to sample collective variables through time-lagged autoencoders(87) or 

to generate Markov state models(88, 89). 

 

Recently, AI-driven multiscale simulations have been used to study the mechanisms of SARS-

CoV-2 spike dynamics(29, 90). Built upon a ML-driven workflow(91), these approaches use ML 

to learn which regions in the conformational phase space are sampled sufficiently and initiate 

new simulations in the undersampled regions. This AI-driven sampling approach facilitated a 

wider exploration of the conformational space of the relevant proteins and, along with several 

associated computational improvements, exhibited strong scaling on the Summit 

supercomputer(92). While effective for sampling known phase spaces, a current limitation of 

these techniques is that the sampling is performed offline, prior to running the simulations. 

Unable to adjust as the simulations are being executed, these methods fall short in offering a 

fully automated framework for multiscale simulations. Techniques that take additional steps 

towards automation will be discussed in the next section. 

 

The recent work on Boltzmann generators(93) represents an important step toward learning the 

equivalent of “reaction coordinates” through DL. For sampling the equilibrium states of many-

body systems, the key idea is to learn a mapping between the energy function of the chosen 

x3



  

 

  

 

many-body system and a simple distribution, such as a Gaussian, that can be sampled easily. The 

samples drawn from the Gaussian are mapped to the configuration space using DL and 

appropriately weighted to provide statistical insights into the system. Perhaps the most important 

benefit of this approach is the ability to interpolate in the learnt latent space. As shown by the 

authors(93), linearly interpolated samples are likely to correspond to realistic transition pathways 

between metastable states. Although powerful in principle, the current scale handled by this 

method is modest (less than a thousand atoms); more work is needed to expand the scope to 

larger and more-realistic systems. 

 

 
Figure 3. Boltzmann generators(93) are a new ML-driven approach to drive sampling of transition pathways between metastable 

states. Using a DL solution, this approach learns a mapping from a simple Gaussian distribution to the distribution of energy 

function and performs sampling in the former rather than the latter. The learned latent space can also be interpolated to 

generate realistic transitions. Image adapted from the original publication(93). 

 

2.2.2 ML-driven Automated Simulation Frameworks 

 

To date, the most sophisticated combination of DL and multiscale simulations is MuMMI 

(Multiscale Machine Learned Modeling Infrastructure)(11, 30), which expands upon the 

philosophy of using DL for enhanced sampling by utilizing it in a dynamic manner(51, 53) and 

combines it with a scalable workflow technology(50, 52) to deliver an automated multiscale 

simulation framework, which has been demonstrated at unprecedented scales, creating ensembles 

of over 100,000 simulations with the simultaneous use of 36,000 GPUs. 

 

The key innovation in MuMMI, specifically when compared to other enhanced sampling 

methods and other multiscale frameworks, is that ML sits at the core of MuMMI and drives the 

multiscale simulation dynamically (see Figure 4). This ML-driven framework offers two key 

advantages. First, the ML-based sampling is dynamic, i.e., the ML model projects the data onto a 

latent space, investigates it, and samples relevant configurations in real time as new data is being 

generated. The dynamic sampling lifts the paradigm of multiscale simulations out of the need to 

work with known or predefined phase spaces, and thus facilitates the exploration of new 

hypotheses and the effects of controlled steering. Second, the dynamic and integrated use of ML 

enables the computation of appropriate weights for these samples which are then used for in situ 

computation and aggregation of ensemble statistics. This in situ mechanism allows capture of the 

insights from the finer scale into the coarser scale immediately and without delay, steering the 

simulations towards improved parameterization and “more interesting” regions of the phase 



  

 

  

 

space. The MuMMI framework is agnostic to the specific type of DL models, and two 

technologies have been demonstrated: a VAE(51) and a deep metric learning approach(53). 

 

The open-source framework MuMMI has been utilized to explore the RAS/RAF/MAPK 

signaling pathway, whose dysregulation is consequential for cancer(11, 30). Originally 

developed to utilize two scales, MuMMI was later extended to enable simultaneous pairwise 

coupling of three resolutions: a continuum model simulation(94), CG MD simulations(55, 57, 

95), and AA MD simulations(96). The continuum model allowed for realistic simulation of 

protein constellations and diverse local lipid environments. ML-guided selections from the 

continuum model were then simulated at the CG scale, simultaneously refining the continuum 

scale while resolving RAS and RAS-RAF lipid fingerprints and different lipid dependent 

structural configurations. Further sampling at the AA scale captured the secondary structure 

adaptation of the proteins upon interaction with the membranes, updating the CG parameters and 

resolving the membrane adaptation of RAS and RAS-RAF. 

 

 
Figure 4. Dynamic-Importance Sampling framework(51) integrated as part of MuMMI(11) steers the multiscale simulation using 

a ML model that investigates the data from the coarse scale (macro model) simulation. Configurations that are likely to produce 

new insights (through a diversity sampling in a machine learned latent space) are identified and selected to be promoted to the 

finer scale (micro model). Through a dynamic reweighting of ths statistics from the finer scale, the parameterization of the 

coarse scale model are improved, creating an in situ feedback process. MuMMI framework is arbitrarily scalable(50, 52) and 

agnostic to the specific type of  DL model(53) as well as other types of modeling techniques(50). Expanding the generalizability 

of MuMMI to other biological systems as well as other application domains beyond biology is feasible but remains to be a task 

for the future. Image used with permission from Bhatia et al.(51). 

3 The Way Forward 
 

There exist several more-specific areas where ML can play a key role in structural biology. For 

example, advances in experimental technologies also provide resourceful data, but it is usually 

disparate from simulated data. Multimodal ML techniques could prove useful in joint processing 

of such data as well as by incorporating additional constraints from experimental data into ML 

models. The use of ML in choosing reaction coordinates is also in early stages and is likely to 

see rapid research and development. Overall, current trends indicate that ML techniques play an 

even more central role in the development and execution of multiscale simulation techniques, 

particularly as current limitations are alleviated.  

 



  

 

  

 

A particularly impactful use of ML that can potentially revolutionize the field of multiscale 

simulations is concurrent transfer of information across scales through in situ feedback. The 

ability to refine an approximate parameterization by providing feedback from running 

simulations lifts the requirement that simulation models be parameterized in final form a priori. 

Feedback can enable a truly explorational and hypotheses-driven approach by offering a means 

to learn appropriate parameterizations at run time, potentially leading more easily to insights not 

previously imagined. However, these methods need to be demonstrated on a broader class of 

systems and parameters, and active research into such ideas will prove fruitful in the future. 

 

Broadly, there are two key limitations of current ML methods in the context of multiscale 

simulations — computational cost and generalizability across systems. Both will be mitigated to 

a great extent by natural progressions in the maturity of a new technology, making the future 

bright for the confluence of ML and multiscale methods. The community is making significant 

advances in addressing scalability concerns by designing new algorithms and developing 

efficient software frameworks. Additionally, specialized hardware for DL is substantially 

reducing the computational cost of training and will soon become easy to access at affordable 

costs. Generalizability, on the other hand, poses a bigger challenge owing largely to the highly 

complex nature of physical, chemical, and biological interactions inherent in scientific systems. 

Current DL models in sciences are trained for specific tasks and on a small number of systems. 

Going forward, the community could instead draw inspiration from Foundation Models(97), 

which are trained on large amount of broad data and can be adapted for a wide range of tasks. 

 

The age of big data has opened tremendous opportunities for discovery and innovation in all 

fields, scientific or otherwise. Data-driven techniques such as ML and (especially) DL are 

accelerating the development and validation of new hypotheses — a process which is at the heart 

of the scientific method. The advent of Exascale Computing, where compute is ubiquitous and 

data access convenient, is enabling simulation ensembles of unprecedented scale– hundreds of 

thousands of simulations and hundreds of TB storage. In the future, the modeling and simulation 

community will find itself increasingly reliant on large-scale, sophisticated workflow 

technologies to undertake and manage these large computational studies. As a result, scientific 

workflows that can be steered automatically and efficiently using ML will become integral to 

large scientific studies. 
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