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Progressive Tree-Based Compression
of Large-Scale Particle Data
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Abstract—Scientific simulations and observations using parti-
cles have been creating large datasets that require effective and
efficient data reduction to store, transfer, and analyze. However,
current approaches either compress only small data well while
being inefficient for large data, or handle large data but with
insufficient compression. Toward effective and scalable compres-
sion/decompression of particle positions, we introduce new kinds
of particle hierarchies and corresponding traversal orders that
quickly reduce reconstruction error while being fast and low in
memory footprint. Our solution to compression of large-scale par-
ticle data is a flexible block-based hierarchy that supports pro-
gressive, random-access, and error-driven decoding, where error
estimation heuristics can be supplied by the user. For low-level node
encoding, we introduce new schemes that effectively compress both
uniform and densely structured particle distributions. Our pro-
posed methods thus target all three phases of a tree-based particle
compression pipeline, namely tree construction, tree traversal, and
node encoding. The improved efficacy and flexibility of these meth-
ods over existing compressors are demonstrated through extensive
experimentation, using a wide range of scientific particle datasets.

Index Terms—Coarse approximation, compression (coding),
data compaction and compression, hierarchical, multiresolution,
particle datasets, progressive decompression, tree traversal,
visualization.

I. INTRODUCTION

A S a common discrete representation beside grids, particles
— moving points in space that carry attributes — are

frequently used in scientific applications, including molecular
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dynamics [1], [2], [3], fluid dynamics [4], [5], [6], computa-
tional cosmology [7], [8], [9], imaging of objects and environ-
ments [10], [11], [12], and plasma physics [13]. With rapid ad-
vances in computational capabilities, simulations and equipment
can generate datasets with trillions of particles [8], [13], [14],
posing serious challenges to studying such datasets for scientific
insights. Compression is a promising solution to the problem of
ever-expanding data. However, no widely accepted compressors
for particle data currently exist, and attempts to adapt grid-based
compressors for particles [15], [16] have seen limited success.
Outside of HPC, techniques designed to compress point clouds
representing scans of objects [17], [18], [19] focus largely on
improving compression ratios at the expense of scalability in
performance, making them unsuitable for large datasets. On
the other hand, multiresolution rendering systems [7], [8], [20],
[21], [22] can handle large data but do not aim for effective
compression.

Toward bridging the gap between high compression ratios
and low-memory-footprint compression, we introduce novel
methods for hierarchy construction, traversal, and encoding that
improve on the state-of-the-art tree-based compression methods.
We introduce novel tree-based particle compression methods
that enable high-quality progressive reconstructions without
requiring excessive computational or memory costs. We focus on
compressing particle positions, since they are needed in almost
all applications and, in many applications, are the only attributes
needed. Particle positions in scientific applications are difficult
to compress losslessly, since they are often specified to such
precision that many lower order bits are essentially random.
Nevertheless, valuable trade-offs can be made in the space of
lossy and progressive (de)compression, in which a decompressor
produces approximations that can be progressively refined by
decoding more bits that are streamed from the disk or over the
network. Progressive decompression allows the user to imme-
diately work with data approximations that improve over time
without having to wait for the full data to load or decompress,
which can greatly enhance the user experience and accelerate
the rate of at which insights are obtained. A progressive decoder
can also adapt to the computational resources and time available
since decompression can stop as soon as a certain time or data
size threshold is reached.

In a progressive setting, reconstruction quality depends
greatly on the order in which the particle position bits are de-
coded, which also affects the costs of keeping a state in memory
for resuming the decompression. Achieving a balance between
decoding costs and reconstruction quality often manifests as a

1077-2626 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: GOOGLE. Downloaded on July 23,2024 at 16:02:36 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-4707-7198
https://orcid.org/0000-0001-8712-7773
https://orcid.org/0000-0003-3817-4199
https://orcid.org/0000-0002-8877-2042
mailto:duong@sci.utah.edu
mailto:pascucci@sci.utah.edu
mailto:hbhatia@llnl.gov
mailto:pl@llnl.gov
https://doi.org/10.1109/TVCG.2023.3260628


4322 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 30, NO. 7, JULY 2024

Fig. 1. Our contributions (in color-filled boxes) cover all three main stages of
the generic tree-based particle compression pipeline.

choice between (1) spatially limited but complete representation
of particles and (2) quantized but uniform coverage of space
— or, in a way, between a depth-first (DT) and a breadth-first
traversal (BT) of a particle hierarchy. We explore this trade-off
from the perspectives of both tree traversal and tree construction.
At the center of our contributions is a node splitting scheme
called odd-even split, which we utilize to construct novel hierar-
chies that can be traversed with asymptotically constant memory
footprints to produce high-quality progressive approximations.

Contributions. Specifically, we propose:
� A new mechanism to partition space, the odd-even split

(Section IV-A), which can be used in conjunction with
the standard k-d splits (i.e., splits that create a k-d tree)
to selectively convert a DT of a subtree into a BT of the
corresponding space.

� A particular way of combining odd-even and k-d splits
to create hybrid trees (Section IV-B) that allows a low-
memory-footprint DT to also have the power of BT (high-
quality reconstruction), while being conducive to compres-
sion.

� An adaptive traversal scheme (AT) (Section V-A) that
allows dynamic guiding of tree refinement, with respect
to a given error metric; we propose two such metrics by
heuristics.

� Block-hybrid trees (Section IV-C), which combine the
strengths of both k-d trees and hybrid trees, to be tra-
versed with block-adaptive traversal (BAT, Section V-B),
for improved memory-quality trade-off and error-guided,
progressive refinement with random access.

� A binomial coding scheme (Section VI-A) that improves
the compression of uniformly distributed particles by mod-
eling the distribution of child node values using the Bino-
mial distribution.

� An odd-even context coding scheme (Section VI-B) that
improves the compression of dense surface data by lever-
aging the similarity between the two subtrees under an
odd-even split.

A preliminary discussion on tree construction and traversal
was presented in our previous work [23]. Here, we further
analyze and expand upon those ideas by combining them with
novel node encoding schemes. Together with tree construction
and traversal, these coding schemes complete the tree-based
particle compression pipeline (Fig. 1). Our contributions are
flexible – they can be utilized either in conjunction with each

other or independently, where suitable with existing frameworks.
We discuss and compare many such cases through experimen-
tation on a wide range of particle datasets. Finally, note that
our work focuses purely on the tasks of particle encoding and
decoding, which serve as foundations for followed-up tasks such
as rendering. The full source code to our implementation is
available online [24].

II. RELATED WORK

In this section we give an overview of the literature on particle
(point cloud) data management and compression.

Particle Hierarchies. One of the most common ways to intro-
duce structure to a particle dataset – to facilitate compression –
is to impose a spatial hierarchy (a tree) on the particles. Many
state-of-the-art compressors follow this approach, where the tree
can be one of many types, e.g., binary trees [25], quadtrees [26],
octrees [17], [19], [27], [28], [29], [30], [31], [32], [33], [34],
[35], k-d trees [36], [37], and bounding-volume hierarchies [20].
An octree where each node stores the occupancy of its children is
by far the most common approach. A hierarchy helps compres-
sion in two ways. First, the higher position bits are “distributed”
into coarser tree levels and shared among particles in the form
of coarse tree nodes. Thus, in finer nodes, one needs to store
only the lower order bits for the particles within, possibly with
truncation [38], [39]. Second, regions with no particles (empty
space) are quickly identified and carved away, further reducing
the number of bits needed to accurately locate particles — a key
property that helps both compression and rendering [8], [40],
[41].

Level-of-Detail. Although a tree naturally provides a progres-
sive coarse-to-fine structure, from which representative particles
can be decoded and viewed [7], [20], some techniques generate
levels of detail through subsampling [21], [22], [25], [30], [42],
[43], which requires no data duplication at coarse levels, and
is often faster to compute. Random subsampling [21], [25],
[42] may seem a reasonable choice, but leads to suboptimal
compression because the bounding volumes for coarse particle
subsets are not easily bounded. This is not the case with our lazy
wavelet inspired odd-even subsampling, which exactly halves
the bounding volume at each level. Wavelet-based downsam-
pling is common for compressing mesh vertices [44], [45],
[46]. When a mesh is not readily available, connectivity can be
introduced by building a graph [47], local graphs [48], [49], or a
resampled signed distance field [50] from the particles. Instead,
we use a regular grid, which is simple and fast to compute.

Error-Guided Tree Construction and Traversal. Minimizing
approximation error can be cast as a (hierarchical) clustering
problem, where, at each level, particles are clustered and repre-
sented with points chosen to minimize some error metric [30],
[38], [51], [52], [53], [54], [55]. More data-adaptive hierarchies
reorder child nodes based on their predicted occupancy [32], or
make planes of k-d divisions adaptive to local variations [37].
The trade-off between quantization (imprecise particles) error
and discretization (low particle count) error has been studied
both in theory [56] and practice [57], [58] for triangle meshes,
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where refinement heuristics are given based on geometric distor-
tion measures, including a progressive reconstruction that ranks
octree nodes by a priority value [59].

Our Adaptive Traversal instead assumes no connectivity in-
formation and works on generic particle data. For reconstructing
point-sampled geometry, DT has been shown to be memory ef-
ficient whereas BT gives better progressive reconstruction [60].
In fact, BT is by far the more preferred traversal order in the
literature. However, we show that the reconstruction quality of
DT can be vastly improved through our odd-even decomposition
of space. Finally, some studies have focused on task-based
error metrics for point clouds beyond PSNR [33], [61]. Our
block-adaptive traversal also facilitates a user-specified error
heuristic at decoding time independently of how the data are
encoded.

Large-Scale and Out-of-Core Techniques. Techniques that
handle large data usually organize the data into blocks, so
that each block can be randomly accessed and decoded inde-
pendently as needed [8], [21]. Multilevel hierarchies that treat
subtrees as blocks are also not uncommon [7], [62], [63], [64],
but previous approaches traverse both the coarse-level tree and
the fine-level subtrees (blocks) using BT, which restricts the
traversal to a single progressive order, where blocks are traversed
one by one with potential memory reuse in between. In contrast,
by using DT within the blocks, our block-hybrid trees allow
for simultaneous, independent, and progressive decoding of all
blocks, not one at a time. This approach provides excellent com-
putational gains because thanks to DT’s low memory footprint.

Modeling for compression. For effective compression, tech-
niques often assume some model for the particle data. The
model can be prescribed, using e.g., local planes [31], [34],
[49], [53], [65], [66], [67], higher order surfaces [26], [68],
self-similarity of patches [69], [70], grid-based or graph-based
transforms [71], [72], [73], or learned from training data [61],
[74], [75], [76], [77]. The model can also be statistical [18], [19],
[28], which often means using a frequency histogram to drive
an arithmetic coder [78]. It is also common to sort particles to
introduce coherency, either with a graph-based traversal [79],
[80] or by directly using particle coordinates [15], [16], [81],
[82]. Our odd-even context coding assumes a statistical model
but is unique in that it relies on similarity between subsampled
versions of the same point set, which is an idea not previously
explored.

III. BACKGROUND

Here we discuss the method of Devillers and Gandoin [36]
(DG), which serves as a base upon which our technical contri-
butions are built. The DG k-d-tree-based coder (implemented
in Google’s Draco [83]) has competitive compression ratios
while being very fast and general, partly due to the coding
scheme being nonstatistical (i.e., it does not rely on knowing the
distribution of the particles). This method constructs a k-d tree
where each node stores the number of particles, n, encapsulated
by a bounding box, B. A given node (B, n) is split into two
children (B1, n1) and (B2, n2), with B1 and B2 formed by
splitting B exactly in the middle along one of the dimensions,

Fig. 2. A k-d tree built for 7 particles in 2D (bottom right). For simplicity,
the subdivision stops when the particles are all separated. Each node contains
the number of particles in its bounding box. Numbers on the edges specify the
number of bits required to encode the corresponding left children nodes (right
children are inferred). The numbers written to the bit stream are (in BT order):
7, 5, 3, 1, 1, 1, 1, using a total of 14 bits.

and n1 and n2 being the numbers of particles bound by B1 and
B2.

By construction, only n1 needs to be encoded at each node,
since n2, B1, and B2 can be inferred. Furthermore, n1 can
be encoded using approximately log2 (n+ 1) bits (since 0 ≤
n1 ≤ n). As n decreases toward the leaf level, the number of
bits needed for encoding each node gets smaller, resulting in
compression. The tree can be implicitly built, traversed, and
encoded at the same time, by having the encoder partition an
array of particles inplace, following a certain traversal order,
which the decoder also follows. In this paper, the term k-d tree
always refers to a tree constructed with this method.

Fig. 2 gives an example for the DG coder. In their paper,
the authors give a theoretical analysis on the number of bits
required to separate the particles. Assuming the tree is balanced
and every split divides the number of particles in half, on
tree depth k, the total number of bits needed is approximately
2k log2 (

N
2k

+ 1), with N being the total number of particles.
The total number of bits needed to separate the particles is there-
fore

∑log2 N−1
k=0 2k log2 (

N
2k

+ 1) ≤ 2.4N . Using this result, the
paper also gives a lower bound on the number of bits saved
using the k-d tree coder compared to verbatim encoding of the
particle positions, which is N log2 N . Since O(N log2 N) is
also the number of bits needed to encode the relative ordering
of the particles (of which there are N !), the k-d tree compresses
by discarding the original order of particles, on top of com-
pression achieved by quickly separating particles from empty
space.

IV. TREE CONSTRUCTION

Most tree-based compression techniques work by encoding
(and decoding) nodes that implicitly give quantized particle
positions. A general template for a tree-based decoder is given
in Algorithm 1 in the Appendix, available online. Encoding
the number of particles may at first seem wasteful: it has been
noted [29], [84] that at coarse levels, occupancy-based octrees
are better than the k-d tree used by DG [36], since encoding
the number of particles in child nodes often requires several bits
compared to at most one bit for occupancy. However, occupancy
encoding requires both children of a node to be coded instead of
just the left child. Toward the leaf level, past the particle separa-
tion stage, encoding n1 requires a single bit, whereas encoding
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the occupancy for both children requires 2 bits. Since there are
approximately as many leaf nodes as there are internal nodes,
encoding occupancy for both children ends up not providing a
saving overall compared to encoding the number of particles in
only the left child for each internal node.

Furthermore, as seen in Section V-A, encoding the number
of particles also allows us to perform adaptive tree traversal
to minimize reconstruction error, which is estimated using the
number of particles and the spatial extent of a node. Finally,
by knowing the number of particles, we can employ a grid-
based approach and switch to encoding the number of empty
grid cells when the grid has more particles than empty cells,
which significantly saves coding cost (as discussed in Section
IV-A).

A. Odd-Even Splits and Odd-Even Trees

When decoding is run to completion, all tree nodes are visited,
in an order that depends on the traversal strategy. In practice,
however, it is often desirable to traverse and decode large trees
only partially to save I/O bandwidth, memory, and decoding
time, reconstructing particles whose positions only approximate
the original particles’ positions. In this context, the shape of the
tree and the traversal order can profoundly affect the accuracy
of the approximation.

Trade-Offs Between Depth-First and Breadth-First Traver-
sals. On a traditional k-d tree constructed with the typical k-d
split, a node’s bounding box B is split along a certain dimension
(one ofx, y, z in 3D) to give children boxesB1 andB2. BT visits
B2 after B1 on each tree level, whereas DT only visits B2 after
B1 has been fully visited. Therefore, when stopped midway, BT
often gives coarse representations of the whole space whereas
DT reconstructs a spatial region perfectly but completely misses
the rest. In most cases, the former behavior is preferred.

DT however is significantly less resource intensive, since it
requires only a small stack whose size is at most the height of
the tree (O(log2 n)), whereas BT requires a queue large enough
to keep all nodes at the current depth, which can grow as large
as the total number of particles (O(n)). A k-d split thus offers
two contrasting choices: high-cost and coarse reconstructions for
both children (with BT), or low-cost and perfect reconstruction
for one child but none of the other (with DT). Here, cost mostly
means memory footprint, but a high memory footprint often
also translates to lower cache utilization and accordingly lower
speed.

Odd-Even Splits. To alleviate the main drawback of DT while
retaining its main benefit, we introduce the notion of an odd-even
split, which spatially “interleaves” the children boxesB1 andB2

by having each contain many disjoint slices instead of being a
whole contiguous region. This scheme is inspired by the hierar-
chical indexing scheme [85] and the lazy wavelet transform [86],
multiresolution techniques invented for data sampled on regular
grids.

We first impose (but do not build) a regular grid on top of
the particles such that each cell contains at most k particle.
One way to build such a grid is to recursively subdivide the
particles’ bounding box into equal halves along the longest
dimension, stopping when the target k is met. For the odd-even

splitting scheme to work best, k should ideally be 1. However,
when particle coordinates are given in floating point, k = 1 may
produce a grid that is too large if any two particles have almost
exactly the same coordinates. In this paper we use k = 1 in all
experiments, but in general k is a parameter that can be set by
the user. In addition, to avoid potential rounding errors when
multiplying and dividing floating point numbers, we work with
quantized particle positions in deciding which grid cell a particle
belongs to, but note that the original particles’ positions can still
be encoded losslessly if needed.

After the full grid is defined, we associate the root of the
tree with the full grid, and associate every other node with a
different subgrid G and the particles contained in G. If G is of
dimensions Gx ×Gy ×Gz , we index its cells from (0,0,0) to
(Gx − 1, Gy − 1, Gz − 1), along three fixed axes. An odd-even
split decomposes a node (G, n) into (Ge, ne) and (Go, no),
such that (Ge, ne) contains the even-indexed cells in G (along
the dimension of splitting) and the ne particles occupying those
cells, while (Go, no) contains the rest of the (odd-indexed) cells
and particles.

Odd-Even Trees. A tree constructed exclusively from odd-
even splits is called an odd-even tree, illustrated in Fig. 3 in
contrast to a k-d tree. The idea of the odd-even split is that either
the odd or the even child node represents a coarse approximation
of the particle set associated with the parent node, so that a DT
can never miss an entire region as with k-d splits. Odd-even
trees carry this idea to an extreme where every node is split
in the odd-even scheme, and therefore DT on an odd-even tree
provides the best coarse-to-fine refinement of the full data with
respect to the number of particles reconstructed, but not in terms
of coding cost (or compression ratio) which will be discussed
later.

Odd-Even Subsampling. Picking either the odd or the even
subgrid to traverse can be viewed as a subsampling method. It
may at first seem that random subsampling (e.g., as done in [87])
achieves the same effects as odd-even subsampling while being
simpler. However, unlike random sampling, odd-even sampling
produce subgrids (Go andGe) that are half the size of the parent
grid G in number of cells, which is important for locating the
particles using fewer bits. Unfortunately, an odd-even tree is still
not conducive to compression. This is due to the fact that for most
datasets, particles do not scatter randomly in space but form
clusters and structures that can be well separated from empty
cells. With odd-even splits, the empty cells are “distributed”
into the odd and even subtrees, effectively increasing the number
of tree nodes to be coded. Instead, k-d splits could be used to
quickly cull away entire empty subtrees (as can be seen in Fig. 4).

Coding Costs. For a more quantitative analysis, we calculate
the number of bits required to locate, using a k-d tree, n particles
in a grid G with G cells, of which n contain particles and G− n
are empty. Denote the answer as T (n,G). In the best case, a k-d
split will put most particles in one child and empty space in the
other, leading to T (n,G) = (log2 n) + T (n,G/2), i.e., n stays
the same but G is reduced by half. After i = log2 (G/n) such
iterations,G/2i andn are approximately equal, i.e.,G/2i < 2n.
The k-d tree now requires ≈ 2.4n bits to separate the n particles
(see Section III), and an additional n bits to finally locate the
particles (assuming at the leaf level, each particle needs to be
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Fig. 3. An example with 11 particles (a to k) on a 42 grid, from which we build a k-d tree (left) and an odd-even tree (right). Our odd-even splits
partition space by interleaving odd-indexed and even-indexed grid cells at each tree level. For simplicity, the trees are built only until every particle is located
to its own cell. The numbers encoded in the bit stream (using DT) are {11, 6, 3, 1, 1(a), 1(f), 1, 0, 1(i), 3, 2, 1(b), 1(h), 1, 1(c), 0} for the k-d tree, and
{11, 5, 3, 1, 1(a), 1(b), 1, 0, 1(e), 3, 2, 1(f), 1(h), 2, 1(i), 0} for the odd-even tree.

Fig. 4. An example that demonstrates how odd-even trees (c) can compress not as well as k-d trees (b), and how hybrid trees (d) alleviate this problem. The
odd-even tree uses odd-even splits exclusively, whereas the hybrid tree only uses odd-even splits on the path connecting the root to the left-most leaf node. Odd-even
trees do not compress well since they create too many nodes to fully locate the particles among all cells.

separated from one empty cell). In contrast, an odd-even split
implies a different recurrence relation: T ′(n,G) = (log2 n) +
2T ′(n/2, G/2) (i.e., both n and G are halved but two substrees
are created instead of one). After the particles are separated
from one another (after ≈ 2.4n bits), each particle needs to be
further located among G/n cells, for a cost of n log2 (G/n)
additional bits. Therefore, the difference between T (n,G) and
T ′(n,G) is that betweenn+ log2 n log2 (G/n) (for the k-d tree)
and n log2 (G/n) (for the odd-even tree). The two are similar
if G is close to n (the grid is dense in particles), but in most
cases, G is significantly larger than n, making the odd-even tree
worse. In experiments, we have seen odd-even trees that are
almost twice as large as a k-d tree for the same input. We later
discuss a solution in Section IV-B.

Encoding Dense Particle Distributions. Besides facilitating
the odd-even splits, an underlying grid allows us to effectively
encode sparse as well as dense particle sets (relative to the size
of the grid). This situation happens when the majority of grid
cells contain a particle, instead of being empty. Whenever the
number of particles, n, is greater than half the number of cells in
G, we can switch from encoding the number of particles in the
left child (n1) to encoding the number of empty cells in the left
child, i.e., G/2− n1, and thus more quickly bound the values to
be encoded further down the tree. Note that n1 is always at most
G/2 since there can only be at most one particle per grid cell. In
the extreme case where every cell contains a particle, our method
simply stops after encoding the number of particles at the root
node, since the number of empty cells is now 0, whereas other
methods, such as DG [36] or MPEG [17] which encodes node’s
occupancy, will keep refining this grid until the individual cells.

Fig. 5. A tree implies an ordering of particles following their transformed
Morton codes. Input Morton bits are shown the top and arrows indicate directions
of the output bits at the bottom. K-d trees and odd-even trees use forward and
backward Morton codes. Hybrid trees use HZ indexing [85]. Block-hybrid trees
use HZ indexing for the medium portion. In-cell refinement bits are shown in
gray.

Tree Traversal as Particle Indexing. To decode particles’
positions by traversing a tree is to reconstruct the bits of their
quantized integer coordinates, or, equivalently, to index (order)
the particles using their coordinate bits. It is well known that a k-d
tree sorts the particles using their Morton codes, which interleave
particle coordinate bits in x, y, z, with an interleaving pattern
that depends on the order of the dimensions along which nodes
are split. In other words, a k-d tree reconstructs the interleaved
coordinate bits from left to right (MSB to LSB) if traversed using
DT, whereas an odd-even tree reconstructs them from right to left
(LSB to MSB) (see Fig. 5), since the LSB determines whether
a particle is “odd” or “even”.

B. Hybrid Trees

As seen in 4.1, odd-even trees create too many nodes because
every odd-even split distributes both the particles and the empty
cells into two children, instead of (mostly) particles in one and
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Fig. 6. (a) A hybrid tree created using a particular combination of odd-even splits (with different colored child nodes) and the standard k-d splits (same colored
child nodes). (b) A block-hybrid tree created by exclusive uses of k-d splits at shallow depths and hybrid trees further down. Both trees are constructed for the same
11-particle in Fig. 3, with additional (conceptual) tree nodes for in-cell refinement bits, shown in gray.

empty cells in the other. To reduce this adverse impact on com-
pression while retaining most of their benefits, we need to reduce
the use of odd-even splits. Here, we borrow a technique from the
wavelet literature, where multiresolution decomposition is done
by recursively transforming only the low-pass filtered subband
in every iteration. Similarly, we restrict the use of odd-even splits
to only left child nodes, with k-d splits used everywhere else.
Furthermore, once a k-d split is used, subsequent descendant
splits will all be k-d splits. We also use the convention that the
left child node is (Ge, ne), i.e., it contains the even-indexed
cells. The dimension of splitting is the largest dimension of the
parent’s gridG, as is also the case for all the other trees discussed
in this paper. Constructed this way, the impact of our hybrid trees
on compression is minimal; in the worst case, we have noticed
only a 5% increase in compressed size compared to k-d trees.

Resolution levels. From top to bottom, every odd-even split
creates a new, coarser resolution level, which consists of nodes in
the even-indexed subtree. A hybrid tree with L resolution levels
contains a sequence of exactly L− 1 odd-even splits, at nodes
found by traversing down the left childL− 2 times from the root
(see Fig. 6(a) for an example withL = 3).L can be automatically
set so that the chain of odd-even splits ends when no particles
or cells are left to split. Assuming that left children are always
visited first, DT on hybrid trees visits the resolution levels from
coarse to fine, producing a “breadth-first” walk of space similar
to BT on k-d trees but with much a smaller memory footprint.

Although hybrid trees are designed with DT in mind, they also
support BT (see Fig. 12 for an example), noting that BT is best
used only within each resolution level and not across resolution
levels (note that nodes at the same depth level may belong to
different resolution levels, see, e.g., Fig. 6(a)). Our proposed
hybrid tree is also only one of the many possible combinations
of k-d and odd-even splits, which may be useful for different
purposes.

Particle indexing. From the perspective of particle indexing
using their interleaved quantized coordinates, hybrid trees cor-
respond to the hierarchical Z (HZ) ordering [85] of particles.
An HZ ordering sorts the particles first by their resolution level,
then by their index within the level. This is done by swappping
the least significant one bit in a particle’s Morton code (whose
position from the LSB determines the particle’s resolution level)

and the bits to its left (which constitute the particle’s intra-level
index). Fig. 5 gives an example of this scheme. The HZ indexing
scheme was first proposed by Pascucci and Frank [85] and
generalized by Hoang et al. [88] for multiresolution decompo-
sition of regular grids. Here, we adapt the scheme to construct
a multiresolution particle tree.

Refinement bits. Refinement bits are bits that further locate
each particle in its corresponding cell (see Fig. 6, gray nodes at
the bottom). All refinement bits at the same tree depth form a bit
plane. Once each particle is located to its cell, further refinement
bit planes recursively half the cell in one dimension at a time,
and the bit values indicate which half the particle belongs to. The
number of refinement bit planes vary across datasets. For some,
there are no refinement bits, i.e., particles are specified with
precision low enough that the particles are exactly located just
by the grid that separates them. In the other spectrum, scientific
simulation data are often dominated by refinement bits due
to the particles being specified with relatively high precision
compared to their density. For hybrid trees, the refinement bits
are stored in depth-first order: particles are completely refined
one by one, in the (depth-first) order that they appear in the
tree. For example, in Fig. 6(a), the refinement bit stream is
10(a)11(b)00(c)10(d)01(e)11(f)00(g)00(h)10(i)10(j)11(k).

Coding costs. As in Section IV-A, let T (n,G) denote the
number of bits needed to locate n particles in G grid cells
using a k-d tree. For a hybrid tree, the number of bits to
code a subtree under node (G, n) is (log2 n) + Tl(n/2, G/2) +
Tr(n/2, G/2). The term Tr(n/2, G/2) (for the right subtree)
is just T (n/2, G/2) since the right subtree is always a k-d
tree. The term Tl(n/2, G/2) (for the left subtree) can again be
decomposed into log2 (n/2) + Tl(n/4, G/4) + T (n/4, G/4).
Following the recurrence to the end and ignoring the var-
ious log2 (n/2

i) terms that are insignificant, we see that
the cost of encoding the whole hybrid tree is approximately∑

i T (n/2
i, G/2i). Since T (n,G) is approximately linear in

n (see Section IV-A), T (n,G) = 2T (n/2, G/2). The sum∑
i T (n/2

i, G/2i) therefore is approximately just T (n,G),
meaning the coding cost of a hybrid tree is approximately the
same as that of a k-d tree for the same input (the difference is of
orderO(log2 n log2 (G/n)) bits which is essentially the number
of resolution levels multiplied by the cost to cull the empty cells
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on each level). This analysis also shows that if a hybrid tree
is traversed with DT, so that the resolution levels are visited
from coarse to fine, the (partial) coding cost doubles after each
resolution level as the number of particles, n, presumably also
doubles.

Reconstruction Error. To quantify the reconstruction error for
each original particle, we find the nearest particle to it among
the reconstructed particles. We give an upper bound for the
reconstruction error in both cases: BT on a k-d tree (BT-kd)
and DT on a hybrid tree (DT-hybrid). Suppose the two particles
form two opposite corners of a box of dimensions dx × dy × dz ,
we can bound the values of dx, dy, dz using k, understood to be
either the number of tree depths not yet traversed (for BT-kd), or
the number of resolution levels not yet traversed (for DT-hybrid).
For both cases, it is guaranteed that dxdydz ≤ wxwywz2

k, with
wx, wy, wz being the dimensions of each cell at the leaf level.
From the analysis in the Coding costs paragraph, we know that
the total coding cost for the k-d tree is approximately the same
as that for the hybrid tree. Moreover, this cost doubles after
each tree depth level (for the k-d tree) and after each resolution
level (for the hybrid tree). Therefore, BT-kd and DT-hybrid
tree have similar coding costs as well as similar reconstruction
error bounds. Note that when all particles are located to their
respective cells, the reconstruction error is bounded by the
dimensions of a cell i.e., wx × wy × wz , and each refinement
bit plane reduces this bound by half.

In terms of reconstruction error, the main difference between
the two schemes is that DT-hybrid puts the reconstructed par-
ticles exactly where the corresponding original particles are,
whereas BT-kd puts them in the middle of the bounding boxes
at the traversal front. Depending on the dataset, one choice may
be preferred over another (Section VII). Because both schemes
have approximately the same total coding costs but DT-hybrid
partially reconstructs particles to a higher precision, it also tends
to generate significantly fewer particles compared to BT-kd
when both are stopped midway at the same decoding bit budget.

Memory Footprint With DT. We do not explicitly construct
the tree in memory, as node values are simply encoded to and
decoded from a bit stream, following a certain traversal order.
Therefore, only the size of the data structures used for traversal,
and not that of the tree itself, counts toward our memory foot-
print. Let G denote the total number of grid cells and N the total
number of particles. Using DT, a hybrid tree can be traversed
using a stack whose size is the bounded by the height of the tree,
which is log2 G+ 1. For each element in the stack, log2 (N + 1)
bits are needed to keep track of the number of particles. The other
information required for traversal, namely a node’s associated
grid, its resolution level, the dimension of splitting, and the type
of split can all be deduced from the path connecting the node
to the tree’s root, encoded with log2 G+ 1 bits. The encoder
(but not decoder) would also need to keep track of the range of
particles that each node encompasses, for a total of log2 (G+ 1)
additional bits per node. In short, the memory footprint of the
encoder is (log2 G+ 1)2 + log2 (N + 1) bits, while that of the
decoder is (log2 G+ 1)2 bits. Even when N = G = 264 − 1,
both the encoder and the decoder require trivial amounts of
memory (less than 600 bytes).

C. Block-Hybrid Trees

A problem wit hybrid trees is that each resolution level is still
traversed region-by-region, resulting in uneven error distribution
(see Fig. 14, a5 for an example). To mitigate this problem, we
split the whole tree into multiple blocks (subtrees) and interleave
their traversals to reduce error more uniformly. The resulting
block-hybrid tree contains multiple blocks that can be decoded
independently. By adaptively allocating bits across blocks, we
can lower the overall reconstruction error, or prioritize certain
blocks for the task at hand. Furthermore, blocks can be randomly
accessed or decoded in parallel.

To construct a block-hybrid tree, we first use k-d splits to form
a coarse portion (a k-d subtree at the top), then combine k-d splits
with odd-even splits to form a medium portion (several hybrid
subtrees), and finally use the in-cell refinement bits to form a
fine portion. Each leaf of the coarse-portion k-d subtree creates
a hybrid sub-tree, or block. The coarse and medium portions
together refine the full grid until at least the cell level (i.e., no
leaf node contains more than one particle). The fine portion
further locates individual particles within the respective cells.
Fig. 6(b) shows an example of a block-hybrid built for our run-
ning example with 11 particles in 2D. From a particle indexing
perspective, block-hybrid trees use hierarchical-Z indexing for
the middle portion, and forward Morton for the rest (see Fig. 5).

Refinement Bits. Since one main goal of block-hybrid trees is
to distribute reconstruction error more uniformly in space, we
store the in-cell refinement bits verbatim in bit plane order, i.e.,
in breadth-first instead of depth-first order as done for hybrid
trees. In particular, each bit plane contains one refinement bit
for each particle in the block, in the order that a medium-phase
DT visits the particle. To decode each refinement bit, we need to
subdivide a bounding box that encompasses the current particle.
To avoid buffering such bounding boxes for later refinement
in typical breadth-first manner, we compute them on-the-fly
from the current position of each particle and the dimensions of
grid cells at the current tree depth. Therefore, no extra memory
is needed in addition to an array storing the positions of the
decoded particles, which is presumably always present.

Flexible Decoding. A block-hybrid tree, once encoded, can
be decoded in different ways; in particular, the blocks can
be decoded independently and to different extents. To support
independent decoding, the compressed bit streams for individual
blocks are stored separately (see Fig. 7). Decoding of higher
resolution particles can also be skipped in favor of more re-
finement bits for lower resolution ones. Such a strategy, which
trades resolution for precision, may be desired if the number of
output particles needs to be limited due to resource constraints.
Since blocks are encoded in independent bit streams, a decoder
can freely jump to any block to continue decoding/traversal if
needed. The user can also supply a scoring function to rank
blocks during traversal. In Section V-B, we introduce one such
function, which interleaves traversal of blocks to lower the
average reconstruction error. Other criteria are possible, for
example, during rendering, certain blocks may be prioritized if
they are closer to the camera, or since they are known to contain
features of interest.
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Fig. 7. Left: a block-hybrid tree with subtrees colored by resolution level.
Right: the blocks’ bit streams are stored separately, so that blocks can be decoded
independently, indicated by the arrows. In a block, medium-portion bits are in
depth-first order (by resolution level), whereas in-cell refinement bits (gray) are
in breadth-first order (by bit plane). At decoding time, any of the resolution
levels (colored triangles) can be skipped in favor of more refinement bits for the
coarser resolution levels.

V. TREE TRAVERSAL

To achieve better progressive reconstruction than BT and
DT, the traversal should be more adaptive, i.e., nodes with a
potentially low cost of traversal (in terms of number of bits to
decode) and high gains (in terms of reduction of error) ought to
be prioritized. We introduce two such adaptive orders: adaptive
traversal (AT) for k-d/hybrid trees and block-adaptive traversal
(BAT) for block-hybrid trees.

A. Adaptive Traversal

For k-d trees, we generalize the container C in Algorithm 1
from either a stack or a queue to a priority queue, which allows
us to perform rate-distortion optimization during traversal, i.e.,
prioritizing nodes that are more important with respect to some
error metric and coding cost. Concretely, the importance score
of a given node (B, n) is

n(d/2)2

log2 (n+ 1)
, (1)

where d is the length of B along the current axis of splitting.
The denominator captures the cost of decoding the current node,
while the (d/2)2 term captures the (squared) error reduction per-
particle obtained by decoding this node, assuming the extreme
case where all n particles fall into either the left or the right
child. Intuitively, spatially larger and denser nodes are prioritized
so that reconstruction errors are reduced for more particles.
We expect AT with this heuristic to work best (compared to
BT) when the particles are highly nonuniformly distributed, and
therefore the importance scores of same-depth nodes are notably
different.

Alternative Score Function. Our importance score is simple
yet works well in practice to improve the rate-distortion trade-off
over BT for a wide range of datasets (see Section VII). Regard-
less, this score is still a heuristic and thus is not guaranteed to
work for all datasets. We also demonstrate modifications (see
Fig. 12) to the importance function by reducing the emphasis on
node density (i.e., by removing n from the numerator), which
we have observed to work better for particles representing a sur-
face. We anticipate, that in future work, many more importance

functions can be devised depending on the data and task at hand,
but all should be supported by AT.

B. Block-Adaptive Traversal

Although AT improves on BT in reconstruction quality, it
has a similarly high memory footprint in practice (see Section
VII-C). Furthermore, AT works with individual nodes and not
blocks, so it cannot be used as is to efficiently traverse a block-
hybrid tree. Here, we generalize AT to block-adaptive traversal
(BAT), which is also data-adaptive but works with entire blocks
of nodes, and has asymptotically constant memory footprint
similarly to that of DT.

With BAT, the coarse portion of a block-hybrid tree is tra-
versed with either BT or AT. Traversal of the medium portion
only begins after traversal of the coarse portion completes. The
medium portion is traversed in iterations in a data-dependent
round-robin manner. Each iteration consists of two steps: first,
we pick a block to traverse using a priority queue that ranks
blocks based on some criterion, then, we traverse the chosen
block using DT. The block at the top of the priority queue is
traversed for either a certain number of decoded bytes or a certain
number of particles, then its priority is updated in the queue, and
the process repeats with the next iteration.

Heuristic for Ranking Blocks. The ranking of blocks is han-
dled by a user-supplied scoring function; here we propose one.
Between two partially decoded blocks, we always prioritize the
one at a coarser resolution level. If the two blocks are at the
same resolution level, we prioritize the one with a smaller value
ofn∗

l/nl, wherenl is the total number of particles in the block on
resolution level l, andn∗

l is the number of those already visited by
the per-block DT. The idea behind this heuristic is to distribute
reconstruction error across blocks as uniformly as possible, so
that the average error is reduced.

Reconstruction Error. By construction, nodes on the same res-
olution level are associated with subgrids with the same internal
spacing (i.e., spatial distances in x, y, z between neighboring
cells). This spacing gives an upper bound on the reconstruction
error, since particles that fall in between neighboring cells in
the current subgrid have not been reconstructed (they belong to
finer resolution levels). For example, when all particles in the
even subtree under an odd-even split have been reconstructed,
but particles in the odd subtree have not (because the odd subtree
belongs to the next finer resolution level), the spacing between
cells of the grid corresponding to the even subtree is an error
upper bound. Therefore, forcing the blocks to be refined to
the same resolution level effectively forces approximately the
same upper bound for reconstruction error everywhere. Once the
blocks are at the same resolution level, the ratio n∗

l/nl indicates
how much of the given level has been traversed.

Memory Footprint. Given a tree of height H , the memory
footprint of BAT is controlled by Hc, the height of the coarse
k-d subtree. Since there are at most 2Hc−1 blocks and each block
contains a stack of size at most H −Hc, the total number of
elements in the different containers is bound by 2Hc−1 (queue)
+2Hc−1(H −Hc) (stack s) + 2Hc−1 (priority queue). In con-
trast, the size of the queue for BT, if used exclusively for the
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Fig. 8. (Normalized) frequencies of n1 (number of particles in the left child),
given n = 16, for both the molecule dataset and a true binomial distribution i.e.,
B(16, 1

2 ). The empirical distribution tracks the theoretical distribution well,
showing that n1 is clearly not uniformly distributed.

whole hierarchy, is bounded above by 2H−1, which is often
several orders of magnitude larger than 2Hc−1, since a typical
Hc is only half of H . In practice, the Hc chosen should be large
enough so that the error is more uniformly distributed and that
random access to the blocks is more fine-grained, but also small
enough to not turn BAT into BT and also to not create too many
blocks.

VI. ENCODING NODE VALUES

During decompression, at a node (G, n), a decoder needs to
decoden1 with the knowledge ofn and the fact that 0 ≤ n1 ≤ n.
The state-of-the-art method [36] uses arithmetic coding [78] or
truncated binary coding [89], [90], assuming thatn1 is uniformly
distributed in {0, . . . , n}. However, this assumption is often not
true in practice, and thus better encoding methods are possi-
ble. We present two such methods here that better predict n1,
namely a nonstatistical binomial coding scheme and a statistical
odd-even context coding scheme, targeting two extreme particle
distributions: uniform and highly structured.

A. Binomial Coding

For data that exhibit approximately uniformly spatial distri-
bution of particles, n1 is not uniformly distributed in {0, . . . , n}
but is more likely to be close to n

2 — a property that we will
exploit to improve the encoding. Given a node with n particles,
there are 2n possible configurations (each of the n particles can
fall in either of the two child nodes with probability 1

2 ), and
there are

(
n
n1

)
ways for the left child node under consideration

to contain exactlyn1 particles out of then particles of the parent.
Therefore, n1 follows the binomial distribution with parameters
n and 1

2 (see Fig. 8), i.e., P (n1|n) =
(
n
n1

)
2−n = B(n, 1

2 ).
Arithmetic Coding for Small n. For small values of n, this

binomial distribution can be effectively coded using arithmetic
coding [78] with a precomputed binomial table. Our arithmetic
coder supports integer probabilities whose sum is at most 231,
which means the distribution B(n, 1

2 ) is exactly modeled for
n ≤ 30. For every n ∈ {1, . . . , 30}, we precompute a table
where the entries are

(
n
n1

)
for every n1 ∈ {0, . . . , n} (we scale

P (n1|n) by 2n to represent the probabilities with integers). We
then compute a prefix sum on each table to obtain a (scaled)
cumulative distribution function (CDF) ready to be used by our
arithmetic coder.

Binary-Search Coding for Large n. When n > 30, arithmetic
coding with exact probabilities fail because our arithmetic coder
uses 32-bit values for its internal states, which have insufficient
precision to distinguish all possible values of P (n1|n), since the
scaled CDF grows exponentially withn, i.e.,

∑n
n1=0

(
n
n1

)
= 2n.

Note that simply using 64-bit internal states would not solve the
problem, due to potential integer overflows under multiplica-
tions. Instead, we leverage the de Moivre-Laplace theorem [91]
to approximate the binomial distribution with a Normal dis-
tribution for large n, i.e., B(n, p) � N(np, np(1− p)), where
N is the Normal distribution with mean μ = np and variance
σ2 = np(1− p)). When p ≈ 1

2 , i.e., assuming an approximately
uniform distribution of particles, the theorem states thatP (n1|n)
follows N(n2 ,

n
4 ).

Denoting the CDF of N(n2 ,
n
4 ) as F , we use a binary search

that locates n1 by halving F in the search range [ai, bi] for
each iteration i, outputting a bit to indicate which half contains
n1. The point of division can be computed using the inverse of
F , namely F−1(x) = n

2 +
√

n
2 erf−1(2x− 1), where erf is the

error function. Initially, [a0, b0] = [0, n], and our search stops
when either the value is found (i.e., n1 ≤ ai < bi < n1 + 1
for some i) or the range stops converging, indicating that we
run out of numerical precision. In the latter case, we assume
equal probabilities for all values in [ai, bi] and encode n1 − ai
using truncated binary coding. We use a mid-short (or centered-
minimal) code [90] that assigns shorter codewords for values
near the middle of [0, . . . , bi − ai]. The pseudocode for our
binomial encoder is given by Algorithm 4 in the Appendix,
available in the online supplemental material.

Code Size Gain Over Truncated Binary Coding. The the-
oretical gain achievable with binomial coding can be as-
sessed using the entropy of the binomial distribution, i.e., H �
1
2 log2 (2πenp(1− p)) (the full derivation is in Appendix D,
available in the online supplemental material). For p = 1

2 , we get
H � 1

2 log2 (2πe
n
4 ) ≈ 1 + 1

2 log2 n. The normalized entropy
(dividing H by log2 n) thus approaches 1

2 as n tends to infinity
and 1 as n tends to 1. In contrast, the normalized entropy of
the uniform distribution is always 1, which means that in the
best case (when n is very large) binomial coding reduces the
code length by half compared to uniform arithmetic coding
or truncated binary coding. This gain makes binomial coding
attractive for large data. Finally, binomial coding also works
well with odd-even splits, because such splits tend to produce
approximately equal numbers of particles on the two sides,
regardless of the actual particle distribution.

B. Odd-Even Context Coding

For datasets where the particles are not approximately uni-
formly distributed – and thus binomial coding does not apply –
we propose a prediction scheme based on DT on a hybrid tree
to improve compression. Since the even (left) and odd (right)
subtrees under an odd-even split interleave spatially, they can
have very similar distributions of particles (Fig. 9). We can
therefore leverage their spatial correlations and use one to predict
the other. An odd-even split creates an odd and an even subtree,
denoted as To and T̄e, respectively. We use different notations
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Fig. 9. The left (red) and right (green) subtrees under an odd-even split can
have similar particle distributions, and one can be used to predict the other. Here,
n1 can be inferred from n, s, and s1 (e.g., n1 ≈ ns1/s).

Fig. 10. The even subtree T̄e is transformed from a hybrid tree to a k-d tree
Te. The odd subtree To is coded using a lockstep traversal with Te. Local
information at the two front nodes ((Gs, s) and (G, n)) are used for context
coding. When To is fully coded, it is combined with Te and transformed into
a k-d tree for next-level prediction.

to indicate thatTo is always a k-d tree, while T̄e is almost always
a hybrid tree by definition. Using DT, we traverse and code T̄e

first, and then use it as a reference to predict To.
Lock-Step Traversal. Since T̄e and To are different kinds of

tree, we first need to transform T̄e to a k-d tree Te. We do so by
invoking a k-d tree building routine on the cells to which the par-
ticles of T̄e have been located. The k-d treesTe andTo can now
be traversed in lockstep using DT to maintain spatial correlations
between respective nodes at the traversal front. After To is fully
coded, the hybrid subtree combining Te and To is converted
to a k-d tree to serve as the reference for the next resolution
level (Fig. 10). Algorithm 5 in the Appendix, available in the
online supplemental material gives the full pseudocode for our
odd-even context encoder. Note that we never explicitly create
and store any of T̄e, Te and To in memory. The conceptual
transformation of T̄e from an odd-even to a k-d subtree can be
performed inplace (by partitioning the array storing the input
particles) and inline (computing node values for Te on-the-fly
as we traverse To).

Context Coding. During the lockstep DT, the traversal front
typically contains two nodes: (Gs, s) on Te and (G, n) on To

(see Fig. 10). If the number of particles in the left child of (Gs, s)
and (G, n) are s1 and n1, respectively, then n, s, and s1 are
known, while n1 needs to be coded. To predict n1 using n, s
and s1, we leverage context-based arithmetic coding [78], in
which the knowledge of a vector c1 (the context) helps narrow
down the possible values for n1. We do not use c1 = [n, s, s1]
to encode n1 directly, since any of these numbers can be so large
that keeping track of all possible contexts is impractical. Instead,
we work with the log values, namelym = �log2 (n+ 1)	,m1 =
�log2 (n1 + 1)	, r = �log2 (s+ 1)	, and r1 = �log2 (s1 + 1)	.

The use of log values also make all contexts more reliable,
since each context now appears enough times to be statistically
significant. However, in place of n1, we now must encode both
m1 and m2 = �log2 (n2 + 1)	, with n2 being the number of
particles in the right child of the current node (i.e.,n2 = n− n1).
The reason is that in general m2 in general cannot be inferred
from m and m1, except in a few special cases, namely when
m = m1 = 1, m2 = 0, and when m1 = 0, m2 = m.

Context update. To encode m1, our context vector c1 con-
tains more information than just [m, r, r1]. In particular, c1 =
[m, r, r1, r2, l, h], with r2 being the log of the number of
particles in the right child of the reference node (i.e., r2 =
�log2 (s− s1 + 1)	), l being the current node’s resolution level
and h being its current tree depth. We use a context table H to
maintain and update the conditional probabilities P (m1|c1) on
the fly for all combinations of m1 and c1 encountered during
traversal. H is a hashtable, that, when indexed with a key c1,
return a frequency array that gives the conditional distribution
of m1 given c1, i.e., P (m1|c1) = H[c1][m1] /

∑
i H[c1][i].

During traversal and coding, we increment H[c1][m1] when-
ever the (c1,m1) pair occurs. However, since Te and To in
general have different shapes, a full context may not exist, in
which case we fall back to the shorter context [m, l, h] for m1.
When a (c1,m1) pair occurs for the first time, H[c1][m1] = 0 and
thus m1 cannot be coded using c1. We instead encode an empty
symbol at index −1 with frequency 1 (i.e., H[c1][−1] = 1) to
signify to the decoder that c1 cannot be used, then encode m1

with uniform probability i.e., 1/(m+ 1). At the same time, we
still increment H[c1][m1] to avoid this zero-probability problem
the next time the same (c1,m1) pair occurs. Finally, m2 is also
encoded with a context, which combines c1 and m1, since m1

is already known before m2 is decoded.

VII. EVALUATION AND RESULTS

We evaluate the efficacy of our proposed solutions through
various experiments. In the discussion that follows, both “BT
on k-d tree” and “DT on k-d tree” are the baseline DG [36]
methods; all other traversal-tree combinations are our contri-
butions. We quantify the reduction in data as bits-per-particle
(bpp), measured by dividing the number of bits decoded by the
total number of particles originally. Particle are always specified
using 32-bit floating point coordinates, which are then quantized
to 32-bit (96 bpp) integers prior to experiments. To generate an
approximation when a traversal stops midway, for each node
(G, n) at the traversal front, we output one (random) particle
within G. We use |C| to refer to the size of container(s) used for
traversal, in terms of number of elements.

We use both the standard peak-signal-to-noise ratio (PSNR)
and rendered images, when appropriate, to assess the quality
of partial reconstructions. PSNR is defined as 20 log10 (W/E),
where E is the root mean square point-wise distance between
every reference particle and its closest reconstructed particle,
and W is the maximum dimension of the bounding box for the
reference particles. A PSNR or 50dB means that E is about
W
300 , and an improvement of 1dB corresponds to a reduction
of E by 10 percent. The rendered images are produced using
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Fig. 11. Rate-distortion curves for AT and BT on k-d trees. AT not only
outperforms BT on all datasets tested, but also produces significantly “smoother”
rate-distortion curves.

OSPRay [92] after the particles have been decoded (i.e., we
do not decode and render simultaneously); as previously men-
tioned, this work focuses purely on encoding and decoding,
and we hope that future work can extend the ideas presented
here to perform direct rendering from compressed data. Note
that unless explicitly mentioned otherwise (as in Section VII-D
and E), truncated binary coding is used.

A. Adaptive Traversal of K-D Trees

AT (with the proposed scoring heuristic, (1)) on k-d trees
improves the rate-distortion trade-off over BT on k-d trees for
a wide range of datasets (see Fig. 11). We do not include DT
in the same figure since the root-mean-square error for DT is
often exceptionally high due to whole regions missing, rendering
L2-norm-based quality metric such as PSNR less meaningful.
Visual demonstration of the differences between low-bit-rate
reconstructions using BT and AT is provided in Fig. 14 (see the
first green-highlighted column pair). We render at low bit rates
the outputs of the various traversal and tree combinations with
OSPRay [92]. The bit rates are chosen so that visual differences
among the combinations are most apparent. For the girl dataset,
AT (a3) provides a better covering of space compared to BT
(a2), which follows a strict order on each tree depth level,
creating a visible seam where the resolution changes. The same
phenomenon occurs for fissure (comparing b2 and b3). For
soldier, although less noticeable, AT (d3) generates a smoother
surface as well. For cosmic web, AT (f3) captures the points of
interest — clusters of particles (galaxies) — better by favoring
densely packed nodes. Overall, by being more data-adaptive, AT
can provide significant improvements over BT, both visually and
quantitatively (in PSNR).

Alternative AT. Our default scoring function for AT (1) does
not always work well for all datasets. For example, the rendering
of the coal dataset (which contains simulated coal particles)
in Fig. 12 contains occlusion because particles on the “surface”
are given more importance. Because of occlusion, however,
the majority of particles in dense tree nodes are hidden from
view, but these are also nodes that our scoring function deems
important. To improve visual quality, we instead use an alterna-
tive scoring function, removingn from the numerator, to prevent

an overemphasis on dense nodes. The result is a reconstruc-
tion with lower PSNR but improved visual quality (i.e., more
similar to the reference, compare Fig. 12(b) and (c), indicat-
ing that PSNR does not always capture visual quality. When
particles are intended to be viewed as surfaces, our alternative
scoring function often produces better visualizations, because
nodes containing surface particles are given higher priority, even
though they tend to be more sparse.

B. Traversals of Hybrid and Block-Hybrid Trees

In Fig. 14, we encode six datasets with different characteristics
(rows) and decode them using five combinations of tree and
traversal orders (columns) discussed in the paper. For each row,
all columns are decoded at the same bit rate, but note that the
number of decoded particles can be different for each method.
It can be seen that DT on our hybrid tree is able to recover
coarse reconstructions of the whole space instead of very fine
reconstructions of only parts of the data, as is the case with DT
on a k-d tree (see the second green-highlighted column pair).
Compared to BT on k-d tree (DG), DT on hybrid tree tend to
produce better results for dense surface data (girl, soldier), and
worse results for sparse scientific data. A specially difficult case
for DT on hybrid tree is molecule, where the distribution is very
sparse but the particles are specified with high precision. In such
cases, refining a coarse subset of particles to high precision is
not useful (see Fig. 14 (c5)).

For most datasets, BAT on block-hybrid tree often improves
upon DT on hybrid tree visually by distributing error more
uniformly throughout space. This observation is most visible
when comparing (a5) with (a6), (c5) with (c6), and (e5) with
(e6). Interestingly, in terms of PSNR, BAT on block-hybrid
tree tends to perform worse than BT or AT on k-d trees and
sometimes even DT on hybrid trees. Visually, however, BAT
typically outperforms all other methods (most strikingly in the
case of molecule), often producing a less blocky look on densely
sampled surfaces compared to BT or AT (see girl or soldier).
BAT can also fail visually (cosmic web) compared to DT on
hybrid tree (see (f5) and (f6)) since when dense regions are
clearly preferred, uniform refinement is not a good strategy.
Finally, our hybrid and block-hybrid trees often generate sig-
nificantly fewer particles at the same bit rates compared to BT
on k-d trees (see fissure, dam break, and cosmic web), which
should benefit downstream processing tasks. The most striking
example can be seen by comparing (e6) with (e2), where BAT
produces an almost identical-looking approximation to BT using
only one-eighth the number of particles.

C. Speed and Memory Footprint

Fig. 13(a) and (b) shows that DT on any tree and BAT on
block-hybrid tree achieve a constant memory footprint, whereas
AT and BT require orders of magnitude more memory. Com-
pared to DT and BAT, BT and AT also become slower very
quickly. Compared to BT, our AT requires the same memory
footprint and is slower, but can improve reconstruction quality
by a good margin (as discussed in Section VII-A). The decode
time for BAT grows faster than that of DT (on both k-d and
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Fig. 12. Reconstruction results for alternative combinations of traversal orders and trees, including the use of an alternative scoring function for AT to obtain a
better reconstruction visually (c), even at a lower PSNR. All reconstructions are at 0.3 bpp. Although not canonical, BT and AT on hybrid trees are very possible
combinations, which may sometimes be preferable than BT on k-d trees, as is perhaps the case here.

Fig. 13. (a, b): Decode times and memory footprints for combinations of trees and traversal methods, plotted for the detonation dataset. DT and BAT achieve
constant memory footprint and linearly scaled decode time in number of bits, whereas AT and BT require orders of magnitude more memory, and also much faster
growing decode time. (c): Compared to MPEG [17], our block-based encoder (BAT on block-hybrid tree) is almost 5× to 7× less expensive, and our time and
memory costs also grow at much slower rates.

hybrid trees), and its memory footprint is also higher, while
still being asymptotically constant (Fig. 13(b)). The trade-off
is higher reconstruction quality (Fig. 14). Notwithstanding its
lack of features compared to BAT on block-hybrid tree, perhaps
the best trade-off is had with DT on hybrid tree, which vastly
improves reconstruction quality over DT on k-d tree almost for
free. Based on these results, we recommend AT on k-d trees for
small data and BAT on block-hybrid trees for large data, with
AT limited to only the coarse k-d portion at the top.

We test the scalability of BAT on block-hybrid tree against
the state-of-the-art octree compressor, MPEG [17], using the
TMC3 [93] reference implementation. We encode eight datasets
in increasing numbers of particles, and record the encoding
time and memory usage of both methods. Fig. 13(c) shows that
our block-based encoder is several times faster than MPEG’s
encoder and, at the same time, uses an order of magnitude
less memory for the larger datasets. Furthermore, our method’s
time requirement and memory footprint grow at much slower
rates. For decoding, a fair comparison is difficult to obtain
since MPEG decodes and outputs one block at a time, whereas
we maintain all the states necessary for simultaneous pro-
gressive decoding of all blocks (important for cross-block
bit allocation). Nevertheless, MPEG crashes while decoding
the largest dataset in this experiment, which consists 400M
particles.

We also encode a dataset with almost one billion particles
(detonation-large, with 968M particles) using the block-hybrid
tree, and then progressively decode and render three approxima-
tions from that same encoding (Fig. 15). Rendering is done with

OSPRay [92] after a subset of particles of the original 968M
particles is decoded in each case. Since OSPRay constructs its
own acceleration data structure for rendering which inflates the
memory requirement, without reducing the number of particles,
the original dataset could not be rendered on our machine
with 64GB RAM (it was previously rendered using 3TB of
RAM [41]). With block-hybrid tree, high-quality reconstruc-
tions are possible at significantly lower particle counts, decoded
progressively using a constant memory footprint (50MB of
RAM).

D. Binomial Coding

In Fig. 16, we plot rate-distortion curves for both truncated
binary coding [89], [90] and our binomial coding using BT
on k-d trees. We use three real-world datasets with approxi-
mately uniform distributions of particles, and a synthetic dataset
where the distribution is truly uniform. It can be seen that, at
the same data quality, binomial coding consistently improves
the compression ratio by a factor between 10 and 20 percent.
Conversely, at the same compression ratio, binomial coding on
average improves the PSNR by about 0.5dB. Fig. 17 visually
demonstrates the difference in data quality between binomial
and truncated binary coding, using the fissure dataset, which
shows that even a seemingly small difference of 0.68dB can
translate to a significant visual difference. The most difficult
dataset to compress is unsurprisingly the random one.

To further evaluate the coding efficiency of our implementa-
tion, we compress the synthetic dataset consisting of randomly
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Fig. 14. Visual comparison of the different traversal-tree combinations (columns) discussed in this paper for six datasets (rows). The reduced datasets are shown
at 1.1 bpp (girl), 1.3 bpp (fissure), 4.4 bpp (molecule), 0.4 bpp (soldier), 3.1 bpp (dam break), and 1.3 bpp (cosmic web).
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Fig. 15. Three approximations of a detonation-large simulation dataset, com-
pressed and then decoded with our block-hybrid tree approach (compression
ratio k× and corresponding number of particles, n, given). All three are
snapshots of a single progressive decompression process, and all use only 50MB
for decoding.

Fig. 16. Rate-distortion curves demonstrate that our proposed binomial en-
coding outperforms the standard truncated-binary coding [89] for datasets with
approximately uniform distributions of particles. We also include a synthetic
random dataset, with random particle distribution.

Fig. 17. At the same bit rates, binomial coding more faithfully reconstructs
features in the original data: for the fissure dataset, the shape of the crack is more
clearly defined with binomial coding.

generated particles, and compare the size of our compressed
bitstream to a theoretically calculated code size. The theoretical
code size is calculated by summing the theoretically smallest
number of bits needed to encode n1 under every k-d tree node
(G, n), assuming n1 is binomially distributed given n. Fig. 18
shows that our binomial coding implementation achieves code
sizes that are virtually the same as the theoretically calculated
ones across all tree depths, meaning our average code size
for each tree node is close to the entropy of the binomial
distribution. The same figure also shows that this (normalized)
entropy approaches 0.5 as n gets larger toward the root of the
tree, and 1 as n approaches 1 toward the leaves, consistent
with our analysis in Section VI-A. This result is encouraging
for increasingly larger (and denser) datasets of the future, since

Fig. 18. Ratios of code sizes (binomial coding over truncated binary cod-
ing), both theoretically calculated and empirically measured, for a synthetic
dataset with randomly generated particles. Our binomial coding implementation
achieves almost perfect coding efficiency.

Fig. 19. Ratio between the compressed code sizes (context coding over
truncated binary coding) at progressively finer resolution levels, with the last
level corresponding to lossless compression. Our context coder works very well
for dense surface datasets (solid lines), and less well for high-precision but sparse
datasets (dashed lines).

progressive refinements will stop more toward the root, resulting
in better compression for binomial coding, approaching a reduc-
tion ratio of 0.5 compared to truncated binary coding. In terms
of performance, binomial coding runs about 1.5 times slower
than truncated binary coding.

E. Odd-Even Context Coding

To test the efficacy of the odd-even context coding method, we
compress several datasets with two methods: truncated binary
coding and context coding. For this comparison, we always use
DT on hybrid trees because odd-even context coding is designed
to work with this combination. On a hybrid tree, DT visits the
resolution levels from coarse to fine; we therefore record the
ratio between the two bitstreams as each resolution level is
processed, and plot these ratios in Fig. 19 (a ratio less than 1
means context coding is better). The figure shows that context
coding improves on truncated binary coding in compression ratio
for several datasets, compressing up to 40% better (for dancer),
and in several cases up to 20% better at the last resolution level
(lossless). Context coding also works better as the resolution gets
finer, likely because sibling subtrees under an odd-even split are
more correlated at finer resolution levels due to them being less
spatially separated. On the other hand, as this distance increases
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Fig. 20. Top: rate-distortion plots for the dancer dataset shows that odd-even
context coding significantly outperforms truncated binary coding. Bottom: vi-
sual comparison between the two coding methods at the same bit rate of 0.03 bpp.
Odd-even context coding reproduces the reference data more faithfully (with
fewer artifacts).

toward coarser resolution levels, the correlation reduces, and
thus compression suffers.

Fig. 19 also shows that our context coding does not work
as well for some datasets, but is never significantly worse than
truncated binary coding. We distinguish two kinds of datasets:
densely sampled surfaces (dashed lines) and sparse but high-
precision particles in scientific simulations (solid lines). It can be
seen that our scheme works better for the surface datasets, where
the particles form very distinct shapes and there are enough par-
ticles that the shapes are relatively well preserved by odd-even
subsampling. Such datasets contain densely distributed parti-
cles, therefore they have significantly fewer in-cell refinement
bits. Since such bits tend to be more random, datasets with
fewer of them often compress better. In contrast, the scientific
simulation datasets are more difficult to compress because they
are dominated by in-cell refinement bits, due to the particles
being relatively sparse but stored with high precision.

There is one nonsurface dataset (detonation) for which our
context-based scheme also works well. Here, the particles
mostly follow a very regular arrangement as they represent ar-
rays of explosives, and context modeling can exploit such global
repetitions. Using the dancer dataset, Fig. 20 demonstrates that
context coding can result in significant improvements in PSNR
over truncated binary coding for progressive decompression.
Visually, the improvements in PSNR translate to better recon-
structed surface at low bit rates with significantly fewer artifacts
(Fig. 20, bottom). In experiments, our implementation of odd-
even context coding is often two times slower (for the encoder),
and between three to eight times slower (for the decoder) than
truncated binary coding. The extra cost mostly comes from
the re-partitioning of the particles in the even subtree, which
(as expected) doubles the computational cost for the encoder.
Without odd-even context coding, the decoder is about four
times faster than the encoder since it does not have to partition
an array of particles to obtain node values (instead, node values

TABLE I
COMPARISON OF LOSSLESS COMPRESSION RATIOS ACROSS FOUR

COMPRESSION METHODS FOR THE SEVERAL DATASETS USED IN OUR

EXPERIMENTS. WE GIVE FURTHER COMMENTS IN THE TEXT FOR THE

DATASETS MARKED WITH∗

are decoded from the bit stream). With odd-even context coding,
which adds an extra partitioning step, both the encoder and the
decoder run at similar speeds.

F. (Near) Lossless Compression Ratio

We compare near lossless compression ratios (lossless with
respect to quantized particles) among four methods: DG [36],
our proposed techniques, MPEG [17], and LASZip [94] for
several datasets in Table I. To achieve the best compression,
we use k-d trees with binomial coding for crystal, molecule,
salt, fissure, detonation and random-80, block-hybrid trees with
odd-even context coding for girl, dancer, and sodier, and hybrid
trees with truncated binary coding for the rest. For lossless
compression of point clouds, LASZip is an industry standard,
and MPEG represents the state-of-the-art in compression ratio.
Table I shows that our methods mostly achieve comparable
lossless compression ratios against that of DG, which means our
use of the odd-even splits does not degrade compression (while
achieving much better quality-memory trade-offs as previously
shown). For dense surface datasets (girl, dancer, soldier), our
odd-even context coding results in significantly better lossless
compression ratios over DG. LASZip produces the worst com-
pression ratios among all methods in most cases, while MPEG
compresses the best with its sophisticated context modeling. Un-
surprisingly, MPEG also performs the best for the dense surface
datasets (girl, dancer, soldier), since it is designed specifically
for this kind of data. For many of the coarse but high-precision
scientific datasets (molecule, salt, dam break, coal and cosmic
web), however, MPEG’s compression ratios are no better than
ours.

Detonation contains highly regular, repeating particle ar-
rangements, which MPEG and LASZip take advantage of,
whereas DG and ours do not. However, with additional
dictionary-based compression, our compression ratio increases
from 3.85 to 10.3, comparable to that of LASZip’s. random-80
is a synthetically generated dataset where a random 80% of the
grid cells contain particles. Since our grid-based approach scales
gracefully from sparse to dense data by switching to coding
empty cells when particles are densely distributed, it compresses
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twice better than DG and four times better than LASZip, whereas
MPEG simply crashes. Most scientific datasets in practice are
sparse relative to the grid size, but future data will likely become
denser as more particles are captured and simulated.

VIII. CONCLUSION AND FUTURE WORK

We have presented novel techniques along a tree-based parti-
cle compression pipeline, centered around the concept of an odd-
even split. We have presented novel tree construction and traver-
sal techniques that achieve a better balance between data quality
and resource requirements compared to other state-of-the-art
particle compressors. Our adaptive traversal approach improves
over the static breadth-first traversal with respect to a user-
defined error heuristic. Compared to k-d trees, our hybrid trees
enable high-quality depth-first traversal. The block-hybrid tree
allows not only independent, low-footprint encoding and decod-
ing of blocks, but also higher reconstruction quality compared
to all other approaches. Our block-adaptive traversal approach
allows flexible, error-guided reconstructions at decoding time
independent of how data is compressed. Our proposed binomial
coding and odd-even context coding significantly improve the
compression ratio for datasets they are designed for by as much
as 20% (for uniform distributions) and 40% (for densely sampled
surfaces). All of the proposed techniques benefit the encoder and
decoder equally. Working together, our contributions amount to a
highly flexible and scalable particle compression system, which
compares favorably to the state-of-the-art MPEG standard in
memory and speed, both in absolute terms and in rates of growth.

Like DG [36], our method does not take advantage of global
redundancy, which could be useful to compress certain regu-
lar arrangements of particles, albeit at the expense of coding
complexity and speed. To realize the odd-even splitting scheme,
we need to quantize particle positions to avoid the inaccuracy
caused by floating-point operations, but techniques may exist
that maintain accuracy without quantization. We also do not
tackle compression of attributes other than positions, although
odd-even splitting – being based on the lazy wavelet transform
– might suggest a wavelet-based compression scheme for at-
tributes. We see opportunities for more in-depth studies of the
trade-offs between odd-even and k-d splits, as well as between
various possible combinations of tree and traversal types. The
idea of odd-even splits may be generalized to octrees, although
perhaps with different trade-offs.

For tasks such as such as nearest-neighbor queries, occlusion
culling, or empty-space skipping in rendering, it remains to be
seen how our odd-even splitting mechanism affects application-
level concerns, and to what extent our hybrid and block-hybrid
trees can be used for noncompression purposes. For some
datasets, neither binomial coding nor odd-even context coding
may be applicable. Such datasets tend to contain nonuniform,
relatively sparse but high-precision particles, which are com-
mon in scientific simulations. Better coding schemes might be
invented to better target these cases, for which we hope the
ideas presented here provide good starting points. Finally, it is
also important to study task-oriented error metrics/heuristics and

their utility to drive either tree construction or tree traversal, or
both.
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